Search tips
Search criteria

Results 1-25 (49)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  An Intratracheal Challenge Murine Model of Asthma: Can Bronchial Inflammation Affect the Nose? 
Extensive data support the influence of the upper airway on lower airway inflammation and pathophysiology in allergic disease. However, few studies have focused on allergic inflammation in the nose after an isolated lower airway allergen challenge, a situation that can exist clinically when human subjects breathe primarily through the mouth, as occurs when nasally congested. This study used a mouse model to investigate whether upper airway inflammation and hyperresponsiveness were induced by an isolated lower airway allergen challenge.
BALB/c mice were sensitized by systemic intraperitoneal injection of ovalbumin/saline and challenged with intratracheal ovalbumin/saline. Inflammation in the nose and lungs was assessed by cytology and histology of nasal tissues and bronchoalveolar lavage fluid (BALF), while nasal airway resistance and response were measured over 3 days post-challenge.
Intratracheal application of an allergen in anaesthetized mice resulted in exclusive deposition in the lower airway. Compared to control animals, ovalbumin-sensitized mice after challenge showed bronchial hyperreactivity and increased IL-5 in the serum BALF, as well as eosinophil infiltration in the lungs. However, nasal histology of the ovalbumin-sensitized mice showed no increase in eosinophil infiltration. The nasal lavage fluid revealed no increase in eosinophils or IL-5, and the nasal airway resistance did not increase after challenge either.
In a mouse allergy model, exclusive allergen challenge of the lower airway can elicit a pulmonary and systemic allergic response, but does not induce upper airway inflammatory or physiological responses.
PMCID: PMC4274473  PMID: 25553266
Asthma; rhinitis; mice; inflammation
3.  Haze, health and disease 
PMCID: PMC4311078
4.  Air pollution and COPD in China 
Journal of Thoracic Disease  2015;7(1):59-66.
Recently, many researchers paid more attentions to the association between air pollution and chronic obstructive pulmonary disease (COPD). Haze, a severe form of outdoor air pollution, affected most parts of northern and eastern China in the past winter. In China, studies have been performed to evaluate the impact of outdoor air pollution and biomass smoke exposure on COPD; and most studies have focused on the role of air pollution in acutely triggering symptoms and exacerbations. Few studies have examined the role of air pollution in inducing pathophysiological changes that characterise COPD. Evidence showed that outdoor air pollution affects lung function in both children and adults and triggers exacerbations of COPD symptoms. Hence outdoor air pollution may be considered a risk factor for COPD mortality. However, evidence to date has been suggestive (not conclusive) that chronic exposure to outdoor air pollution increases the prevalence and incidence of COPD. Cross-sectional studies showed biomass smoke exposure is a risk factor for COPD. A long-term retrospective study and a long-term prospective cohort study showed that biomass smoke exposure reductions were associated with a reduced decline in forced expiratory volume in 1 second (FEV1) and with a decreased risk of COPD. To fully understand the effect of air pollution on COPD, we recommend future studies with longer follow-up periods, more standardized definitions of COPD and more refined and source-specific exposure assessments.
PMCID: PMC4311081
Biomass smoke; air pollution; haze; chronic obstructive pulmonary disease (COPD)
5.  25-Hydroxyvitamin D3-Deficiency Enhances Oxidative Stress and Corticosteroid Resistance in Severe Asthma Exacerbation 
PLoS ONE  2014;9(11):e111599.
Oxidative stress plays a significant role in exacerbation of asthma. The role of vitamin D in oxidative stress and asthma exacerbation remains unclear. We aimed to determine the relationship between vitamin D status and oxidative stress in asthma exacerbation. Severe asthma exacerbation patients with 25-hydroxyvitamin D3-deficiency (V-D deficiency) or 25-hydroxyvitamin D-sufficiency (V-D sufficiency) were enrolled. Severe asthma exacerbation with V-D-deficiency showed lower forced expiratory volume in one second (FEV1) compared to that with V-D-sufficiency. V-D-deficiency intensified ROS release and DNA damage and increased TNF-α, OGG1 and NFκB expression and NFκB phosphorylation in severe asthma exacerbation. Supplemental vitamin D3 significantly increased the rates of FEV1 change and decreased ROS and DNA damage in V-D-deficiency. Vitamin D3 inhibited LPS-induced ROS and DNA damage and were associated with a decline in TNF-α and NFκB in epithelial cells. H2O2 reduces nuclear translocation of glucocorticoid receptors in airway epithelial cell lines. V-D pretreatment enhanced the dexamethasone-induced nuclear translocation of glucocorticoid receptors in airway epithelial cell lines and monocytes from 25-hydroxyvitamin D3-deficiency asthma patients. These findings indicate that V-D deficiency aggravates oxidative stress and DNA damage, suggesting a possible mechanism for corticosteroid resistance in severe asthma exacerbation.
PMCID: PMC4224414  PMID: 25380286
6.  Vitamin C Mitigates Oxidative Stress and Tumor Necrosis Factor-Alpha in Severe Community-Acquired Pneumonia and LPS-Induced Macrophages 
Mediators of Inflammation  2014;2014:426740.
Oxidative stress is an important part of host innate immune response to foreign pathogens. However, the impact of vitamin C on oxidative stress and inflammation remains unclear in community-acquired pneumonia (CAP). We aimed to determine the effect of vitamin C on oxidative stress and inflammation. CAP patients were enrolled. Reactive oxygen species (ROS), DNA damage, superoxide dismutases (SOD) activity, tumor necrosis factor-alpha (TNF-α), and IL-6 were analyzed in CAP patients and LPS-stimulated macrophages cells. MH-S cells were transfected with RFP-LC3 plasmids. Autophagy was measured in LPS-stimulated macrophages cells. Severe CAP patients showed significantly increased ROS, DNA damage, TNF-α, and IL-6. SOD was significantly decreased in severe CAP. Vitamin C significantly decreased ROS, DNA damage, TNF-α, and IL-6. Vitamin C inhibited LPS-induced ROS, DNA damage, TNF-α, IL-6, and p38 in macrophages cells. Vitamin C inhibited autophagy in LPS-induced macrophages cells. These findings indicated that severe CAP exhibited significantly increased oxidative stress, DNA damage, and proinflammatory mediator. Vitamin C mitigated oxidative stress and proinflammatory mediator suggesting a possible mechanism for vitamin C in severe CAP.
PMCID: PMC4165740  PMID: 25253919
7.  BMP4 Increases Canonical Transient Receptor Potential Protein Expression by Activating p38 MAPK and ERK1/2 Signaling Pathways in Pulmonary Arterial Smooth Muscle Cells 
Abnormal bone morphogenetic protein (BMP) signaling has been implicated in the pathogenesis of pulmonary hypertension. We previously found that BMP4 elevated basal intracellular Ca2+ ([Ca2+]i) concentrations in distal pulmonary arterial smooth muscle cells (PASMCs), attributable in large part to enhanced store-operated Ca2+ entry through store-operated Ca2+ channels (SOCCs). Moreover, BMP4 up-regulated the expression of canonical transient receptor potential (TRPC) proteins thought to compose SOCCs. The present study investigated the signaling pathways through which BMP4 regulates TRPC expression and basal [Ca2+]i in distal PASMCs. Real-time quantitative PCR was used for the measurement of mRNA, Western blotting was used for the measurement of protein, and fluorescent microscopic for [Ca2+]i was used to determine the involvement of p38 and extracellular regulated kinase (ERK)–1/2 mitogen-activated protein kinase (MAPK) signaling in BMP4–induced TRPC expression and the elevation of [Ca2+]i in PASMCs. We found that the treatment of BMP4 led to the activation of both p38 MAPK and ERK1/2 in rat distal PASMCs. The induction of TRPC1, TRPC4, and TRPC6 expression, and the increases of [Ca2+]i caused by BMP4 in distal PASMCs, were inhibited by treatment with either SB203580 (10 μM), the selective inhibitor for p38 activation, or the specific p38 small interfering RNA (siRNA). Similarly, those responses induced by BMP4 were also abolished by treatment with PD98059 (5 μM), the selective inhibitor of ERK1/2, or by the knockdown of ERK1/2 using its specific siRNA. These results indicate that BMP4 participates in the regulation of Ca2+ signaling in PASMCs by modulating TRPC channel expression via activating p38 and ERK1/2 MAPK pathways.
PMCID: PMC3824027  PMID: 23526217
BMP4; intracellular Ca2+ concentration; TRPC; p38 MAPK; ERK1/2
8.  Sildenafil Inhibits Hypoxia-Induced Transient Receptor Potential Canonical Protein Expression in Pulmonary Arterial Smooth Muscle via cGMP-PKG-PPARγ Axis 
Transient receptor potential canonical (TRPC) proteins play important roles in chronically hypoxic pulmonary hypertension (CHPH). Previous results indicated that sildenafil inhibited TRPC1 and TRPC6 expression in rat distal pulmonary arteries (PAs). However, the underlying mechanisms remain unknown. We undertook this study to investigate the downstream signaling of sildenafil’s regulation on TRPC1 and TRPC6 expression in pulmonary arterial smooth muscle cells (PASMCs). Hypoxia-exposed rats (10% O2 for 21 d) and rat distal PASMCs (4% O2 for 60 h) were taken as models to mimic CHPH. Real-time PCR, Western blotting, and Fura-2–based fluorescent microscopy were performed for mRNA, protein, and Ca2+ measurements, respectively. The cellular cyclic guanosine monophosphate (cGMP) analogue 8-(4-chlorophenylthio)-guanosine 3′,5′-cyclic monophosphate sodium salt (CPT-cGMP) (100 μM) inhibited TRPC1 and TRPC6 expression, store-operated Ca2+ entry (SOCE), and the proliferation and migration of PASMCs exposed to prolonged hypoxia. The inhibition of CPT-cGMP on TRPC1 and TRPC6 expression in PASMCs was relieved by either the inhibition or knockdown of cGMP-dependent protein kinase (PKG) and peroxisome proliferator–activated receptor γ (PPARγ) expression. Under hypoxic conditions, CPT-cGMP increased PPARγ expression. This increase was abolished by the PKG antagonists Rp8 or KT5823. PPARγ agonist GW1929 significantly decreased TRPC1 and TRPC6 expression in PASMCs. Moreover, hypoxia exposure decreased, whereas sildenafil treatment increased, PKG and PPARγ expression in PASMCs ex vivo, and in rat distal PAs in vivo. The suppressive effects of sildenafil on TRPC1 and TRPC6 in rat distal PAs and on the hemodynamic parameters of CHPH were inhibited by treatment with the PPARγ antagonist T0070907. We conclude that sildenafil inhibits TRPC1 and TRPC6 expression in PASMCs via cGMP-PKG-PPARγ–dependent signaling during CHPH.
PMCID: PMC3824028  PMID: 23526219
sildenafil; PKG; PPARγ; TRPC; PASMCs
9.  Sleep Disturbances and Health-Related Quality of Life in Adults with Steady-State Bronchiectasis 
PLoS ONE  2014;9(7):e102970.
Sleep disturbances are common in patients with chronic lung diseases, but little is known about the prevalence in patients with bronchiectasis. A cross sectional study was conducted to investigate the prevalence and determinants associated with sleep disturbances, and the correlation between sleep disturbances and quality of life (QoL) in adults with steady-state bronchiectasis.
One hundred and forty-four bronchiectasis patients and eighty healthy subjects were enrolled. Sleep disturbances, daytime sleepiness, and QoL were measured by utilizing the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS) and St. George Respiratory Questionnaire (SGRQ), respectively. Demographic, clinical indices, radiology, spirometry, bacteriology, anxiety and depression were also assessed.
Adults with steady-state bronchiectasis had a higher prevalence of sleep disturbances (PSQI>5) (57% vs. 29%, P<0.001), but not daytime sleepiness (ESS≥10) (32% vs. 30%, P = 0.76), compared with healthy subjects. In the multivariate model, determinants associated with sleep disturbances in bronchiectasis patients included depression (OR, 10.09; 95% CI, 3.46–29.37; P<0.001), nocturnal cough (OR, 1.89; 95% CI, 1.13–3.18; P = 0.016), aging (OR, 1.04; 95% CI, 1.01–1.07; P = 0.009) and increased 24-hour sputum volume (OR, 2.01; 95% CI, 1.22–3.33; P = 0.006). Patients with sleep disturbances had more significantly impaired QoL affecting all domains than those without. Only 6.2% of patients reported using a sleep medication at least weekly.
In adults with steady-state bronchiectasis, sleep disturbances are more common than in healthy subjects and are related to poorer QoL. Determinants associated with sleep disturbances include depression, aging, nighttime cough and increased sputum volume. Assessment and intervention of sleep disturbances are warranted and may improve QoL.
PMCID: PMC4103887  PMID: 25036723
10.  The normative value of inflammatory cells in the nasal perfusate of Chinese adults: a pilot study 
Journal of Thoracic Disease  2014;6(7):905-912.
To establish stable, well-accepted nasal perfusion and a normative value of classifying cells in the nasal perfusate of Chinese adults.
A total of 500 healthy adults were divided into two groups of 250 people per group (group A, 16-30 years old and group B, 31-60 years old; male-to-female ratio, 1:1). All volunteers were non-smokers; they were irrigated with saline, and multiple inflammatory cells in the perfusate were analyzed.
Irrigation was successfully performed in 479 cases, a success rate of 95.80%. The types of inflammatory cells showed a skewed distribution. The median number and interquartile range (IQR) of eosinophils were 0 and 0.2, respectively. These values were 0.4 and 2.2, respectively, for neutrophils and 0 and 0, respectively, for both lymphocytes and macrophages. There was no significant difference between males and females (P>0.05). There was a significant difference in the numbers of neutrophils and lymphocytes in the different age groups (P=0.000), but there was no significant difference in the numbers of eosinophils and macrophages (P>0.05). The 95% unilateral upper limited values (UULVs) of eosinophils and neutrophils in the nasal perfusates were 2.99 and 14.94, respectively, for group A and 1.41 and 17.08 for group B. As a result, the total 95% UULVs of eosinophils and neutrophils in the nasal perfusate were 2.00 and 16.80.
We established stable, well-accepted nasal perfusions and normal values for classifying the cells in the nasal perfusate of Chinese adults; the normative values of the inflammatory cells in nasal perfusate are 2.00 for the 95% UULV of eosinophils and 16.80 for neutrophils. Age might be one of the factors affecting the cells in rhinitis.
PMCID: PMC4120180  PMID: 25093086
Nasal perfusate; reference value; methodology; healthy Chinese adults
11.  Hopes versus reality 
Journal of Thoracic Disease  2014;6(6):E139-E140.
PMCID: PMC4073402  PMID: 24977025
12.  Chest tightness variant asthma: deja vu all over again 
Journal of Thoracic Disease  2014;6(5):407-408.
PMCID: PMC4015016  PMID: 24822094
13.  Preparation of Lung-Targeting, Emodin-Loaded Polylactic Acid Microspheres and Their Properties 
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has been identified to have the potential to improve lung fibrosis and lung cancer. To avoid the liver and kidney toxicities and the fast metabolism of emodin, emodin-loaded polylactic acid microspheres (ED-PLA-MS) were prepared and their characteristics were studied. ED-PLA-MS were prepared by the organic phase dispersion-solvent diffusion method. By applying an orthogonal design, our results indicated that the optimal formulation was 12 mg/mL PLA, 0.5% gelatin, and an organic phase:glycerol ratio of 1:20. Using the optimal experimental conditions, the drug loading and encapsulation efficiencies were (19.0 ± 1.8)% and (62.2 ± 2.6)%, respectively. The average particle size was 9.7 ± 0.7 μm. In vitro studies indicated that the ED-PLA-MS demonstrated a well-sustained release efficacy. The microspheres delivered emodin, primarily to the lungs of mice, upon intravenous injection. It was also detected by microscopy that partial lung inflammation was observed in lung tissues and no pathological changes were found in other tissues of the ED-PLA-MS-treated animals. These results suggested that ED-PLA-MS are of potential value in treating lung diseases in animals.
PMCID: PMC4013625  PMID: 24733070
lung-targeted; emodin; microspheres; polylactic acid; sustained-release
14.  Gene silencing of β-galactosamide α-2,6-sialyltransferase 1 inhibits human influenza virus infection of airway epithelial cells 
BMC Microbiology  2014;14:78.
Human influenza virus hemagglutinin prefers to use sialic acid (SA) receptors via α-2,6 linkages. The β-galactoside α-2,6-sialyltransferase I (ST6Gal I) protein is encoded by the ST6GAL1 gene and is responsible for the addition of α-2,6 linked SA to the Galβ1-4GlcNAc disaccharide of glycans and glycoproteins found on the cellular surface. Therefore, ST6GAL1 could be a potential target for anti-influenza therapeutics. We used specific small interfering RNAs (siRNAs) to block expression of ST6GAL1 and limit distribution of SA receptors on the surface of airway epithelial cells.
The siRNA duplexes we used inhibited ST6GAL1 mRNA expression and subsequent expression of the encoding protein. As a result, synthesis of α-2,6 SA galactose was inhibited. Adsorption of influenza virus particles to the surface of cells transfected with appropriate specific siRNAs was significantly reduced. Intracellular viral genome copy number and virus titer within the supernatant of cells transfected with siRNAs was significantly reduced in a dose-dependent manner compared with those for untransfected cells and cells transfected with non-specific siRNAs.
We used siRNAs targeting ST6GAL1 to inhibit the expression of certain cell surface receptors, thereby preventing virus adsorption. This resulted in the inhibition of human influenza virus infection. Our findings are a significant development in the identification of potential new anti-influenza drug targets.
PMCID: PMC3986885  PMID: 24670114
Influenza virus; Receptors; Sialyltransferase; RNAi
15.  Lung Function and Incidence of Chronic Obstructive Pulmonary Disease after Improved Cooking Fuels and Kitchen Ventilation: A 9-Year Prospective Cohort Study 
PLoS Medicine  2014;11(3):e1001621.
Pixin Ran, Nanshan Zhong, and colleagues report that cleaner cooking fuels and improved ventilation were associated with better lung function and reduced COPD among a cohort of villagers in Southern China.
Please see later in the article for the Editors' Summary
Biomass smoke is associated with the risk of chronic obstructive pulmonary disease (COPD), but few studies have elaborated approaches to reduce the risk of COPD from biomass burning. The purpose of this study was to determine whether improved cooking fuels and ventilation have effects on pulmonary function and the incidence of COPD.
Methods and Findings
A 9-y prospective cohort study was conducted among 996 eligible participants aged at least 40 y from November 1, 2002, through November 30, 2011, in 12 villages in southern China. Interventions were implemented starting in 2002 to improve kitchen ventilation (by providing support and instruction for improving biomass stoves or installing exhaust fans) and to promote the use of clean fuels (i.e., biogas) instead of biomass for cooking (by providing support and instruction for installing household biogas digesters); questionnaire interviews and spirometry tests were performed in 2005, 2008, and 2011. That the interventions improved air quality was confirmed via measurements of indoor air pollutants (i.e., SO2, CO, CO2, NO2, and particulate matter with an aerodynamic diameter of 10 µm or less) in a randomly selected subset of the participants' homes. Annual declines in lung function and COPD incidence were compared between those who took up one, both, or neither of the interventions.
Use of clean fuels and improved ventilation were associated with a reduced decline in forced expiratory volume in 1 s (FEV1): decline in FEV1 was reduced by 12 ml/y (95% CI, 4 to 20 ml/y) and 13 ml/y (95% CI, 4 to 23 ml/y) in those who used clean fuels and improved ventilation, respectively, compared to those who took up neither intervention, after adjustment for confounders. The combined improvements of use of clean fuels and improved ventilation had the greatest favorable effects on the decline in FEV1, with a slowing of 16 ml/y (95% CI, 9 to 23 ml/y). The longer the duration of improved fuel use and ventilation, the greater the benefits in slowing the decline of FEV1 (p<0.05). The reduction in the risk of COPD was unequivocal after the fuel and ventilation improvements, with an odds ratio of 0.28 (95% CI, 0.11 to 0.73) for both improvements.
Replacing biomass with biogas for cooking and improving kitchen ventilation are associated with a reduced decline in FEV1 and risk of COPD.
Trial Registration
Chinese Clinical Trial Register ChiCTR-OCH-12002398
Please see later in the article for the Editors' Summary
Editors' Summary
Nearly 3 billion people in developing countries heat their homes and cook by burning biomass—wood, crop waste, and animal dung—in open fires and leaky stoves. Burning biomass this way releases pollutants into the home that impair lung function and that are responsible for more than a million deaths from chronic obstructive pulmonary disease (COPD) every year. COPD is a group of diseases that interfere with breathing. Normally, air is breathed in through the nose or mouth and travels down the windpipe into two bronchial tubes (airways) in the lungs. These tubes branch into smaller tubes (bronchioles) that end in bunches of tiny air sacs (alveoli). Oxygen in the air passes through the thin walls of these sacs into small blood vessels and is taken to the heart for circulation round the body. The two main types of COPD—chronic bronchitis (long-term irritation and swelling of the bronchial tubes) and emphysema (damage to the walls of the alveoli)—make it hard for people to breathe. Most people with COPD have both chronic bronchitis and emphysema, both of which are caused by long-term exposure to cigarette smoke, indoor air pollution, and other lung irritants. Symptoms of COPD include breathlessness during exercise and a persistent cough that produces large amounts of phlegm (mucus). There is no cure for COPD, but drugs and oxygen therapy can relieve its symptoms, and avoiding lung irritants can slow disease progression.
Why Was This Study Done?
Exposure to indoor air pollution has been associated with impaired lung function and COPD in several studies. However, few studies have assessed the long-term effects on lung function and on the incidence of COPD (the proportion of a population that develops COPD each year) of replacing biomass with biogas (a clean fuel produced by bacterial digestion of biodegradable materials) for cooking and heating, or of improving kitchen ventilation during cooking. Here, the researchers undertook a nine-year prospective cohort study in rural southern China to investigate whether these interventions are associated with any effects on lung function and on the incidence of COPD. A prospective cohort study enrolls a group of people, determines their characteristics at baseline, and follows them over time to see whether specific characteristic are associated with specific outcomes.
What Did the Researchers Do and Find?
The researchers offered nearly 1,000 people living in 12 villages in southern China access to biogas and to improved kitchen ventilation. All the participants, who adopted these interventions according to personal preferences, completed a questionnaire about their smoking habits and occupational exposure to pollutants and had their lung function measured using a spirometry test at the start and end of the study. Some participants also completed a questionnaire and had their lung function measured three and six years into the study. Finally, the researchers measured levels of indoor air pollution in a randomly selected subset of homes at the end of the study to confirm that the interventions had reduced indoor air pollution. Compared with non-use, the use of clean fuels and of improved ventilation were both associated with a reduction in the decline in lung function over time after adjusting for known characteristics that affect lung function, such as smoking. The use of both interventions reduced the decline in lung function more markedly than either intervention alone, and the benefits of using the interventions increased with length of use. Notably, the combined use of both interventions reduced the risk of COPD occurrence among the study participants.
What Do These Findings Mean?
These findings suggest that, among people living in rural southern China, the combined interventions of use of biogas instead of biomass and improved kitchen ventilation were associated with a reduced decline in lung function over time and with a reduced risk of COPD. Because participants were not randomly allocated to intervention groups, the people who adopted the interventions may have shared other unknown characteristics (confounders) that affected their lung function (for example, having a healthier lifestyle). Thus, it is not possible to conclude that either intervention actually caused a reduction in the decline in lung function. Nevertheless, these findings suggest that the use of biogas as a substitute for biomass for cooking and heating and improvements in kitchen ventilation might lead to a reduction in the global burden of COPD associated with biomass smoke.
Additional Information
Please access these websites via the online version of this summary at
The US National Heart, Lung, and Blood Institute provides detailed information for the public about COPD
The US Centers for Disease Control and Prevention provides information about COPD and links to other resources (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about COPD, personal stories, and links to other resources
The British Lung Foundation, a not-for-profit organization, provides information about COPD in several languages
The Global Initiative for Chronic Obstructive Lung Disease works to improve prevention and treatment of COPD around the world
The World Health Organization provides information about all aspects of indoor air pollution and health (in English, French, and Spanish)
MedlinePlus provides links to other information about COPD (in English and Spanish)
PMCID: PMC3965383  PMID: 24667834
16.  Early intervention with tiotropium in Chinese patients with GOLD stages I–II chronic obstructive pulmonary disease (Tie-COPD): study protocol for a multicentre, double-blinded, randomised, controlled trial 
BMJ Open  2014;4(2):e003991.
Owing to the high and increasing morbidity and mortality, chronic obstructive pulmonary disease (COPD) has become a major public health problem worldwide. Although the majority of patients with COPD are in the early stages, little attention has been paid to them, in particular regarding to early intervention. Tiotropium bromide can significantly relieve symptoms and reduce the incidence of acute exacerbations of COPD. Therefore, we hypothesise that therapy with tiotropium bromide will benefit patients with COPD with early-stage disease.
A randomised, double-blinded, placebo-controlled, parallel-group, multicentre clinical trial (Tiotropium In Early COPD study, Tie-COPD study) is being conducted to evaluate the efficacy and safety of long-term intervention with tiotropium in patients with COPD with early-stage disease. A total of 839 patients with COPD who satisfied the eligibility criteria were randomly assigned (1:1) to receive a once daily inhaled capsule of either tiotropium bromide (18 μg) or matching placebo for 2 years. Measurements will include forced expiratory volume in 1 s, health-related quality of life, grade degree of breathlessness related to activities, COPD exacerbations and pharmacoeconomic analysis.
This study was approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University. Recruitment started in November 2011 and ended in October 2013, with 839 patients randomised. The treatment follow-up of participants with Tie-COPD is currently ongoing and is due to finish in November 2015. The authors will disseminate the findings in peer-reviewed publications, conferences and seminar presentations.
Trial registration (NCT01455129).
PMCID: PMC3931994  PMID: 24549160
COPD; Early Intervention; Tiotropium; Protocol
17.  My dreams 
PMCID: PMC3944185  PMID: 24605233
18.  Sodium Tanshinone IIA Sulfonate Inhibits Canonical Transient Receptor Potential Expression in Pulmonary Arterial Smooth Muscle from Pulmonary Hypertensive Rats 
Danshen, the dried root of Salvia miltiorrhiza, is widely used in clinics in China for treating various diseases, including cardiovascular diseases. Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA isolated as the major active component from Danshen, was recently reported to be effective in attenuating the characteristic pulmonary vascular changes associated with chronically hypoxic pulmonary hypertension (CHPH); however, the underlying detailed mechanisms are poorly understood. In this study, we investigated the effects of STS on basal intracellular Ca2+ concentration ([Ca2+]i) and store-operated Ca2+ entry (SOCE) in distal pulmonary arterial smooth muscle cells (PASMCs) exposed to prolonged hypoxia or isolated from CHPH rats. SOCE measured by Mn2+ quenching of Fura-2 fluorescence in PASMCs from rats exposed to chronic hypoxia (10% O2, 21 d) was increased by 59%, and basal [Ca2+]i was increased by 119%; this effect was inhibited by intraperitoneal injection of STS. These inhibitory effects of STS on hypoxic increases of SOCE and basal [Ca2+]i were associated with reduced expression of canonical transient receptor potential (TRPC)1 and TRPC6 in distal pulmonary arterial smooth muscle and decreases on right ventricular pressure, right ventricular hypertrophy, and peripheral pulmonary vessel thickening. In ex vivo cultured distal PASMCs from normoxic rats, STS (0–25 μM) dose-dependently inhibited hypoxia-induced cell proliferation and migration, paralleled with attenuation in increases of basal [Ca2+]i, SOCE, mRNA, and protein expression of TRPC1 and TRPC6. STS also relieved right ventricular systolic pressure, right ventricular hypertrophy, and TRPC1 and TRPC6 protein expression in distal pulmonary arteries in a monocrotaline-induced rat model of pulmonary arterial hypertension. These results indicate that STS prevents pulmonary arterial hypertension development likely by inhibiting TRPC1 and TRPC6 expression, resulting in normalized basal [Ca2+]i and attenuated proliferation and migration of PASMCs.
PMCID: PMC3547081  PMID: 23065131
STS; TRPC; SOCE; pulmonary hypertension
19.  Genetic Variants in MUC4 Gene Are Associated with Lung Cancer Risk in a Chinese Population 
PLoS ONE  2013;8(10):e77723.
Mucin MUC4, which is encoded by the MUC4 gene, plays an important role in epithelial cell proliferation and differentiation. Aberrant MUC4 overexpression is associated with invasive tumor proliferation and poor outcome in epithelial cancers. Collectively, the existing evidence suggests that MUC4 has tumor-promoter functions. In this study, we performed a case-control study of 1,048 incident lung cancer cases and 1,048 age- and sex frequency-matched cancer-free controls in a Chinese population to investigate the role of MUC4 gene polymorphism in lung cancer etiology. We identified nine SNPs that were significantly associated with increased lung cancer risk (P = 0.0425 for rs863582, 0.0333 for rs842226, 0.0294 for rs842225, 0.0010 for rs2550236, 0.0149 for rs2688515, 0.0191 for rs 2641773, 0.0058 for rs3096337, 0.0077 for rs859769, and 0.0059 for rs842461 in an additive model). Consistent with these single-locus analysis results, the haplotype analyses revealed an adverse effect of the haplotype “GGC” of rs3096337, rs859769, and rs842461 on lung cancer. Both the haplotype and diplotype “CTGAGC” of rs863582, rs842226, rs2550236, rs842225, and rs2688515 had an adverse effect on lung cancer, which is also consistent with the single-locus analysis. Moreover, we observed statistically significant interactions for rs863582 and rs842461 in heavy smokers. Our results suggest that MUC4 gene polymorphisms and their interaction with smoking may contribute to lung cancer etiology.
PMCID: PMC3804582  PMID: 24204934
20.  Corticosteroid monotherapy in a case of bronchocentric granulomatosis with a two-year follow-up 
Journal of Thoracic Disease  2013;5(5):E207-E209.
Bronchocentric granulomatosis (BCG) is a rare disease. Because of the possibility of fungal infection, BCG has usually been treated with corticosteroids and antifungal agent. However, fungi are not detected in all BCG tissues. We report a case of proven BCG by open lung biopsy without fungi in a woman with corticosteroids monotherapy and two-year follow-up.
PMCID: PMC3815734  PMID: 24255794
Bronchocentric granulomatosis (BCG); fungal infection; open lung biopsy; corticosteroids; allergic disease
21.  Acute hypoxia activates store-operated Ca2+ entry and increases intracellular Ca2+ concentration in rat distal pulmonary venous smooth muscle cells 
Journal of Thoracic Disease  2013;5(5):605-612.
Exposure to acute hypoxia causes vasoconstriction in both pulmonary arteries (PA) and pulmonary veins (PV). The mechanisms on the arterial side have been studied extensively. However, bare attention has been paid to the venous side.
To investigate if acute hypoxia caused the increase of intracellular Ca2+ concentration ([Ca2+]i), and Ca2+ influx through store-operated calcium channels (SOCC) in pulmonary venous smooth muscle cells (PVSMCs).
Fluorescent microscopy and fura-2 were used to measure effects of 4% O2 on [Ca2+]i and store-operated Ca2+ entry (SOCE) in isolated rat distal PVSMCs.
Measurements and main results
In PVSMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in the sarcoplasmic reticulum (SR) and nifedipine to prevent Ca2+ entry through L-type voltage-depended Ca2+ channels (VDCC), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. Moreover, the increased [Ca2+]i in PVSMCs perfused with normal salt solution was completely blocked by SOCC antagonists SKF-96365 and NiCl2 at concentrations that SOCE >85% was inhibited but [Ca2+]i responses to 60 mM KCl were not altered. On the contrary, L-type VDCC antagonist nifedipine inhibited increase in [Ca2+]i to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely abolished by perfusion with Ca2+-free KRBS.
These results suggest that acute hypoxia enhances SOCE via activating SOCCs, leading to increased [Ca2+]i in distal PVSMCs.
PMCID: PMC3815740  PMID: 24255773
Calcium signaling; pulmonary venous smooth muscle (PVSM); store-operated Ca2+ entry (SOCE); intracellular Ca2+ concentration ([Ca2+]i)
22.  Re-Challenge with Ovalbumin Failed to Induce Bronchial Asthma in Mice with Eosinophilic Bronchitis 
PLoS ONE  2013;8(9):e75195.
To investigate whether eosinophilic bronchitis without airway hyperresponsiveness will develop bronchial asthma in allergic mice.
Mice were sensitized with OVA on days 0, 7, and 14, challenged on days 21 to 23 (1st OVA challenge), and re-challenged on days 46 to 48 (2nd OVA challenge), intranasally with 10 (the EB group) and 200 (the AS group) μg OVA. Lung resistance (RL) was assessed 24 h after each challenge and on day 45 followed by analysis of leukocyte distribution in the bronchoalveolar lavage (BAL) fluid and histological examination.
Twenty-four hours after the 1st OVA challenge, aerosolized methacholine caused a dose-dependent increase in RL in all groups. At doses ≥1.56 mg/mL, RL in the AS group was significantly higher than that of the NS-1 group (P<0.01 or 0.05) and at doses ≥12.5 mg/mL, RL was markedly higher in the AS group than that of the EB group (P<0.01). The percentage of eosinophils in both the EB group and the AS group was markedly higher than that of the control group. Twenty-four hours after the 2nd OVA challenge, at doses ≤12.5 mg/mL, there was no significant difference in RL among all groups (P>0.05). At doses ≥12.5 mg/mL, RL in the AS group was significantly higher than that of the control group and EB group (P<0.01 or 0.05). The percentage of eosinophils in the AS group was noticeably higher than that of the EB group(P<0.05). Furthermore, there was apparent infiltration by inflammatory cells, predominantly eosinophils, into the sub-epithelial region of the bronchus and the bronchioles and around the vessels in the EB and AS group.
Re-challenge with low doses of ovalbumin did not increase airway reactivity and failed to induce bronchial asthma in mice with ovalbumin-induced EB.
PMCID: PMC3779187  PMID: 24073252
23.  Antitumor effect of para-toluenesulfonamide against lung cancer xenograft in a mouse model 
Journal of Thoracic Disease  2013;5(4):472-483.
Conventional chemotherapy and radiation therapy against non-small cell lung cancer (NSCLC) are relatively insensitive and unsatisfactory. Para-toluenesulfonamide (PTS), a unique antitumor drug for local intratumoral injection, shows an efficacy of severely suppressing solid tumor growth with mild side effects in clinical trials. The aim of this study was to investigate the effect of PTS on lung cancer H460 cells in vivo in nude mice and its underlying mechanisms in vitro.
A lung cancer model for in vivo experiment was established in BALB/c nude mice using H460 cells to examine the effect of local injection of PTS on tumor suppression. We also assessed the injury to the normal tissue by subcutaneous injection of PTS. In vitro, PTS was diluted into different doses for study on its antitumor mechanisms. We evaluated the necrotic effect of PTS on H460 cells by PI and Hoechst 33342 staining. Cell viability and membrane permeability were also determined by using CCK-8 and LDH assays respectively. All these tests were conducted in comparison with traditional local injection of anhydrous ethanol.
PTS was shown to significantly inhibit the growth of H460 tumor xenografts in nude mice by inducing necrosis of the tumor histologically. Its effect on tumor growth was significantly stronger than that of anhydrous ethanol. By contrast, the injured normal tissue by PTS injection was less than that by ethanol. In vitro, PTS still demonstrated excellent necrotizing effect on H460 cells when diluted to a lower concentration. Detailed analysis of PTS on H460 cells indicated that PTS had a better effect on attenuating the cell viability and increasing the cell membrane permeability than ethanol at the same level.
PTS exhibits excellent inhibition effect on the growth of lung cancer by necrotizing tumor in vivo and in vitro, reducing tumor cell viability and augmenting the membrane permeability in vitro, with only mild injury to normal tissue. The antitumor effect of PTS on lung cancer in vivo and in vitro is stronger than that of ethanol.
PMCID: PMC3755678  PMID: 23991305
Para-toluenesulfonamide (PTS); lung cancer; necrosis; therapy; antitumor agent
24.  Epidemiology of cough in relation to China 
Cough is one of the most common complaints for which patients seek medical attention. Misdiagnosis and mistreatment of cough exist commonly in China. The prevalence of acute cough caused by upper airway infection fluctuates between 9% and 64% in the community, for chronic cough, the prevalence >10% in most surveys, ranging from 7.2%-33%. The common causes of chronic cough are upper airway cough syndrome (previously called as post nasal drip syndrome [PNDS]), cough variant asthma (CVA), gastroesophageal reflux related cough (GERD) and eosinophilic bronchitis (EB). There is a regional discrepancy regarding the prevalence of common causes of cough and distribution of gender among China, UK, USA, the most common cause of chronic cough in China are CVA, followed by UACS, EB and atopic cough (AC), the male is almost equal to female in numbers in China. The risk factors for cough includes cold air, smoking, environmental pollutants, noxious substances and allergens, and unreasonable diet habits.
PMCID: PMC3711853  PMID: 23835047
Cough; Epidemiology; Etiology; Risk factor; Quality of life
25.  Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases 
PLoS ONE  2013;8(6):e66276.
The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infection confer therapeutic protection to others infected with the same pathogen. However, survivors may not always be available for providing plasma or for the cloning of monoclonal antibodies (mAbs).
Methodology/Principal Findings
The genome and the immunoglobulin genes in rhesus macaques and humans are highly homologous; therefore, we investigated whether neutralizing mAbs that are highly homologous to those of humans (human-like) could be generated. Using the H5N1 influenza virus as a model, we first immunized rhesus macaques with recombinant adenoviruses carrying a synthetic gene encoding hemagglutinin (HA). Following screening an antibody phage display library derived from the B cells of immunized monkeys, we cloned selected macaque immunoglobulin heavy chain and light chain variable regions into the human IgG constant region, which generated human-macaque chimeric mAbs exhibiting over 97% homology to human antibodies. Selected mAbs demonstrated potent neutralizing activities against three clades (0, 1, 2) of the H5N1 influenza viruses. The in vivo protection experiments demonstrated that the mAbs effectively protected the mice even when administered up to 3 days after infection with H5N1 influenza virus. In particular, mAb 4E6 demonstrated sub-picomolar binding affinity to HA and superior in vivo protection efficacy without the loss of body weight and obvious lung damage. The analysis of the 4E6 escape mutants demonstrated that the 4E6 antibody bound to a conserved epitope region containing two amino acids on the globular head of HA.
Our study demonstrated the generation of neutralizing mAbs for potential application in humans in urgent preparedness against outbreaks of new influenza infections or other virulent infectious diseases.
PMCID: PMC3688872  PMID: 23824680

Results 1-25 (49)