Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Zhao, supine")
1.  Characterization of Erysiphe necator-Responsive Genes in Chinese Wild Vitis quinquangularis 
Powdery mildew (PM), caused by fungus Erysiphe necator, is one of the most devastating diseases of grapevine. To better understand grapevine-PM interaction and provide candidate resources for grapevine breeding, a suppression subtractive hybridization (SSH) cDNA library was constructed from E. necator-infected leaves of a resistant Chinese wild Vitis quinquangularis clone “Shang-24”. A total of 492 high quality expressed sequence tags (ESTs) were obtained and assembled into 266 unigenes. Gene ontology (GO) analysis indicated that 188 unigenes could be assigned with at least one GO term in the biological process category, and 176 in the molecular function category. Sequence analysis showed that a large number of these genes were homologous to those involved in defense responses. Genes involved in metabolism, photosynthesis, transport and signal transduction were also enriched in the library. Expression analysis of 13 selected genes by qRT-PCR revealed that most were induced more quickly and intensely in the resistant material “Shang-24” than in the sensitive V. pseudoreticulata clone “Hunan-1” by E. necator infection. The ESTs reported here provide new clues to understand the disease-resistance mechanism in Chinese wild grapevine species and may enable us to investigate E. necator-responsive genes involved in PM resistance in grapevine germplasm.
PMCID: PMC3472759  PMID: 23109867
Chinese wild Vitis quinquangularis; Erysiphe necator; SSH; EST; qRT-PCR
2.  Identification of ERp29 as a biomarker for predicting nasopharyngeal carcinoma response to radiotherapy 
Oncology Reports  2011;27(4):987-994.
Radioresistance continues to be a major problem in the treatment of nasopharyngeal carcinoma (NPC). This study aimed to identify novel proteins associated with NPC radioresistance. We used a mass spectrometry driven-proteomic strategy to identify novel proteins associated with NPC radioresistance, and differential proteins were subsequently processed by bioinformatic analysis. As a result, twelve proteins were identified with aberrant expression in radioresistant (RR) NPC tissues compare to radiosensitive (RS) NPC tissues. Among these proteins, ERp29, Mn-SOD, HSP27 and GST ω1 were found to be significantly up-regulated in RR NPC tissues, and ERp29 was selected for further validation. Immunohistochemistry analysis confirmed that ERp29 was overexpressed in RR NPC tissues compared with RS NPC tissues. To prove the role of ERp29 in the induction of NPC radioresistance, ERp29 was down-regulated in the ERp29 enriched NPC cells CNE-1 and 6-10B by specific shRNA. Radiosensitivity was measured using cell proliferation assay and clonogenic survival assay, and cell apoptosis was measured using flow cytometric analysis. We found that ERp29 knockdown attenuated CNE-1 and 6-10B cell radioresistance and enhanced cell apoptosis. These results suggest that ERp29 associates with radioresistance in NPC, and ERp29 could be a potential biomarker for predicting NPC response to radiotherapy.
PMCID: PMC3583588  PMID: 22160175
ERp29; proteomics; radioresistance; human nasopharyngeal carcinoma

Results 1-2 (2)