PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (41)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
author:("Zhao, chaohu")
2.  Genomic Characterization of Novel Listeria monocytogenes Serotype 4b Variant Strains 
PLoS ONE  2014;9(2):e89024.
Over 90% of the human listeriosis cases are caused by Listeria monocytogenes serotypes 1/2a, 1/2b and 4b strains. As an alternative to antigen-antibody based serotyping, a PCR-based method for serogrouping has been developed and validated. In this communication, we report an in-depth analysis of five 4b variant strains, four clinical isolates from Australia and one environmental isolate from USA. Although these five strains were serotype 4b by classical serotyping method, the serogrouping PCR profiles of these strains show the presence of a 1/2a-3a specific amplicon in addition to the standard 4b-4d-4e specific amplicons. These strains were further analyzed by pulsed field gel electrophoresis, binary gene typing, multi-locus variable-number-tandem-repeat analysis and a high density pan-genomic Listeria microarray. Using these sub-typing results, the clinical isolates were grouped into two distinct genomic groups- one of which could be part of an unidentified outbreak. The microarray results when compared with our database of other 4b outbreak isolates indicated that the serotype 4b variant strains represent very different genotypic profiles than the known reported 4b outbreak strains representing major epidemic clones. The acquisition of serotype 1/2a gene clusters by the 4b variant strains appears to be independent in origin, spanning large areas of geographical and temporal space and may indicate predisposition of some 4b strains towards accepting DNA from related organisms.
doi:10.1371/journal.pone.0089024
PMCID: PMC3929640  PMID: 24586485
3.  Complete Genome Sequence of a Multidrug-Resistant Salmonella enterica Serovar Typhimurium var. 5− Strain Isolated from Chicken Breast 
Genome Announcements  2013;1(6):e01068-13.
Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of salmonellosis. Here, we report a closed genome sequence, including sequences of 3 plasmids, of Salmonella serovar Typhimurium var. 5− CFSAN001921 (National Antimicrobial Resistance Monitoring System [NARMS] strain ID N30688), which was isolated from chicken breast meat and shows resistance to 10 different antimicrobials. Whole-genome and plasmid sequence analyses of this isolate will help enhance our understanding of this pathogenic multidrug-resistant serovar.
doi:10.1128/genomeA.01068-13
PMCID: PMC3868858  PMID: 24356834
4.  Distribution of Pathogenicity Islands OI-122, OI-43/48, and OI-57 and a High-Pathogenicity Island in Shiga Toxin-Producing Escherichia coli 
Applied and Environmental Microbiology  2013;79(11):3406-3412.
Pathogenicity islands (PAIs) play an important role in Shiga toxin-producing Escherichia coli (STEC) pathogenicity. The distribution of PAIs OI-122, OI-43/48, and OI-57 and a high-pathogenicity island (HPI) were determined among 98 STEC strains assigned to seropathotypes (SPTs) A to E. PCR and PCR-restriction fragment length polymorphism assays were used to identify 14 virulence genes that belonged to the four PAIs and to subtype eae and stx genes, respectively. Phylogenetic trees were constructed based on the sequences of pagC among 34 STEC strains and iha among 67 diverse pathogenic E. coli, respectively. Statistical analysis demonstrated that the prevalences of OI-122 (55.82%) and OI-57 (82.35%) were significantly greater in SPTs (i.e., SPTs A, B, and C) that are frequently associated with severe disease than in other SPTs. terC (62.5%) and ureC (62.5%) in OI-43/48 were also significantly more prevalent in SPTs A, B, and C than in SPTs D and E. In addition, OI-122, OI-57, and OI-43/48 and their associated virulence genes (except iha) were found to be primarily associated with eae-positive STEC, whereas HPI occurred independently of the eae presence. The strong association of OI-122, OI-43/48, and OI-57 with eae-positive STEC suggests in part that different pathogenic mechanisms exist between eae-positive and eae-negative STEC strains. Virulence genes in PAIs that are associated with severe diseases can be used as potential markers to aid in identifying highly virulent STEC.
doi:10.1128/AEM.03661-12
PMCID: PMC3648051  PMID: 23524679
5.  Activity-Dependent Modulation of Odorant Receptor Gene Expression in the Mouse Olfactory Epithelium 
PLoS ONE  2013;8(7):e69862.
Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN) stably expresses a single odorant receptor (OR) type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived) side was significantly lower (for four ORs), similar (for three ORs), or significantly higher (for eight ORs) as compared to that in the open (over-stimulated) side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.
doi:10.1371/journal.pone.0069862
PMCID: PMC3726745  PMID: 23922828
6.  Phylogenetic Analysis of Non-O157 Shiga Toxin-Producing Escherichia coli Strains by Whole-Genome Sequencing 
Journal of Clinical Microbiology  2012;50(12):4123-4127.
Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains are emerging food-borne pathogens causing life-threatening diseases and food-borne outbreaks. A better understanding of their evolution provides a framework for developing tools to control food safety. We obtained 15 genomes of non-O157 STEC strains, including O26, O111, and O103 strains. Phylogenetic trees revealed a close relationship between O26:H11 and O111:H11 and a scattered distribution of O111. We hypothesize that STEC serotypes with the same H antigens might share common ancestors.
doi:10.1128/JCM.02262-12
PMCID: PMC3502965  PMID: 23052305
7.  Genome Sequences of Two Emerging Non-O157 Shiga Toxin-Producing Escherichia coli Strains 
Genome Announcements  2013;1(3):e00200-13.
Shiga toxin-producing Escherichia coli (STEC) causes severe illness in humans, including hemorrhagic colitis and hemolytic uremic syndrome. A parallel evolutionary model was proposed in which E. coli strains of distinct phylogenies independently integrate Shiga toxin-encoding genes and evolve into STEC. We report the draft genomes of two emerging non-O157 STEC strains.
doi:10.1128/genomeA.00200-13
PMCID: PMC3656200  PMID: 23682138
9.  Draft Genome Sequences of Eight Salmonella enterica Serotype Newport Strains from Diverse Hosts and Locations 
Journal of Bacteriology  2012;194(18):5146.
Salmonellosis is a major contributor to the global public health burden. Salmonella enterica serotype Newport has ranked among three Salmonella serotypes most commonly associated with food-borne outbreaks in the United States. It was thought to be polyphyletic and composed of independent lineages. Here we report draft genomes of eight strains of S. Newport from diverse hosts and locations.
doi:10.1128/JB.01171-12
PMCID: PMC3430313  PMID: 22933769
10.  Phylogenetics and Differentiation of Salmonella Newport Lineages by Whole Genome Sequencing 
PLoS ONE  2013;8(2):e55687.
Salmonella Newport has ranked in the top three Salmonella serotypes associated with foodborne outbreaks from 1995 to 2011 in the United States. In the current study, we selected 26 S. Newport strains isolated from diverse sources and geographic locations and then conducted 454 shotgun pyrosequencing procedures to obtain 16–24 × coverage of high quality draft genomes for each strain. Comparative genomic analysis of 28 S. Newport strains (including 2 reference genomes) and 15 outgroup genomes identified more than 140,000 informative SNPs. A resulting phylogenetic tree consisted of four sublineages and indicated that S. Newport had a clear geographic structure. Strains from Asia were divergent from those from the Americas. Our findings demonstrated that analysis using whole genome sequencing data resulted in a more accurate picture of phylogeny compared to that using single genes or small sets of genes. We selected loci around the mutS gene of S. Newport to differentiate distinct lineages, including those between invH and mutS genes at the 3′ end of Salmonella Pathogenicity Island 1 (SPI-1), ste fimbrial operon, and Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR) associated-proteins (cas). These genes in the outgroup genomes held high similarity with either S. Newport Lineage II or III at the same loci. S. Newport Lineages II and III have different evolutionary histories in this region and our data demonstrated genetic flow and homologous recombination events around mutS. The findings suggested that S. Newport Lineages II and III diverged early in the serotype evolution and have evolved largely independently. Moreover, we identified genes that could delineate sublineages within the phylogenetic tree and that could be used as potential biomarkers for trace-back investigations during outbreaks. Thus, whole genome sequencing data enabled us to better understand the genetic background of pathogenicity and evolutionary history of S. Newport and also provided additional markers for epidemiological response.
doi:10.1371/journal.pone.0055687
PMCID: PMC3569456  PMID: 23409020
11.  Genome Sequences of Salmonella enterica Serovar Heidelberg Isolates Isolated in the United States from a Multistate Outbreak of Human Salmonella Infections 
Genome Announcements  2013;1(1):e00004-12.
Salmonella enterica is recognized as one of the most common bacterial agents of foodborne illness. We report draft genomes of four Salmonella serovar Heidelberg isolates associated with the recent multistate outbreak of human Salmonella Heidelberg infections linked to kosher broiled chicken livers in the United States in 2011. Isolates 2011K-1259 and 2011K-1232 were recovered from humans, whereas 2011K-1724 and 2011K-1726 were isolated from chicken liver. Whole genome sequence analysis of these isolates provides a tool for studying the short-term evolution of these epidemic clones and can be used for characterizing potentially new virulence factors.
doi:10.1128/genomeA.00004-12
PMCID: PMC3569330  PMID: 23405335
12.  Genome Sequences of Five Salmonella enterica Serovar Heidelberg Isolates Associated with a 2011 Multistate Outbreak in the United States 
Journal of Bacteriology  2012;194(12):3274-3275.
Salmonella enterica serovar Heidelberg has caused numerous outbreaks in humans. Here, we report draft genomes of five isolates of serovar Heidelberg associated with the recent (2011) multistate outbreak linked to ground turkey in the United States. Isolates 2011K-1110 and 2011K-1132 were recovered from humans, while isolates 2011K-1138, 2011K-1224, and 2011K-1225 were recovered from ground turkey. Whole-genome sequence analysis of these isolates provides a tool for studying the short-term evolution of these epidemic clones.
doi:10.1128/JB.00419-12
PMCID: PMC3370844  PMID: 22628505
13.  Genetic Characterization of Escherichia coli O104 Isolates from Different Sources in the United States 
Escherichia coli O104 isolates collected from different sources in the United States were examined for virulence genes typical of enterohemorrhagic E. coli and those identified in the O104:H4 isolate associated with the 2011 German outbreak. The unexpected presence of virulence markers in these isolates highlights the importance of screening unusual and potentially pathogenic Shiga toxin-producing E. coli serotypes.
doi:10.1128/AEM.07533-11
PMCID: PMC3294489  PMID: 22210209
14.  Molecular Evidence for Zoonotic Transmission of an Emergent, Highly Pathogenic Campylobacter jejuni Clone in the United States 
Journal of Clinical Microbiology  2012;50(3):680-687.
Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health.
doi:10.1128/JCM.06167-11
PMCID: PMC3295108  PMID: 22189122
15.  Grape seed proanthocyanidin extract alleviates ouabain-induced vascular remodeling through regulation of endothelial function 
Molecular Medicine Reports  2012;6(5):949-954.
Recent studies indicate that chronic ouabain treatment leads to hypertension and hypertensive vascular remodeling. Grape seed proanthocyanidin extract (GSPE) has been reported to be effective in treating arteriosclerosis, while little is known about its effect on systolic blood pressure and vascular remodeling. In this study, the effects of GSPE on systolic blood pressure and vascular remodeling were analyzed by treating ouabain-induced hypertensive rats with GSPE (250 mg/kg·d). The expression of nitric oxide (NO) and endothelin-1 (ET-1) in thoracic aorta was examined by ELISA; the mRNA and protein levels of TGF-β1 were detected using real-time PCR and western blotting, respectively. The results showed that the systolic blood pressure was significantly decreased following treatment with GSPE, with blocked vascular remodeling. The ET-1 content was reduced while NO production was increased in the GSPE group, which showed improved vascular endothelial function. Moreover, GSPE also reduced TGF-β1 expression in the thoracic aorta, which is a determinant in vascular remodeling. In conclusion, GSPE antagonized ouabain-induced hypertension and vascular remodeling and is recommended as a potential anti-hypertensive agent for patients with hypertensive vascular diseases.
doi:10.3892/mmr.2012.1026
PMCID: PMC3493090  PMID: 22895622
grape seed proanthocyanidin extract; ouabain; rats; hypertension; vascular remodeling
16.  Antimicrobial Drug Resistance in Escherichia coli from Humans and Food Animals, United States, 1950–2002 
Emerging Infectious Diseases  2012;18(5):741-749.
Determining drug resistance trends will optimize treatment and public health responses.
We conducted a retrospective study of Escherichia coli isolates recovered from human and food animal samples during 1950–2002 to assess historical changes in antimicrobial drug resistance. A total of 1,729 E. coli isolates (983 from humans, 323 from cattle, 138 from chickens, and 285 from pigs) were tested for susceptibility to 15 antimicrobial drugs. A significant upward trend in resistance was observed for ampicillin (p<0.001), sulfonamide (p<0.001), and tetracycline (p<0.001). Animal strains showed increased resistance to 11/15 antimicrobial agents, including ampicillin (p<0.001), sulfonamide (p<0.01), and gentamicin (p<0.001). Multidrug resistance (≥3 antimicrobial drug classes) in E. coli increased from 7.2% during the 1950s to 63.6% during the 2000s. The most frequent co-resistant phenotype observed was to tetracycline and streptomycin (29.7%), followed by tetracycline and sulfonamide (29.0%). These data describe the evolution of resistance after introduction of new antimicrobial agents into clinical medicine and help explain the range of resistance in modern E. coli isolates.
doi:10.3201/eid1805.111153
PMCID: PMC3358085  PMID: 22515968
Escherichia coli; bacteria; antimicrobial drug resistance humans; food animals; United States
17.  Antimicrobial Susceptibility to Azithromycin among Salmonella enterica Isolates from the United States▿ 
Due to emerging resistance to traditional antimicrobial agents, such as ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol, azithromycin is increasingly used for the treatment of invasive Salmonella infections. In the present study, 696 isolates of non-Typhi Salmonella collected from humans, food animals, and retail meats in the United States were investigated for antimicrobial susceptibility to azithromycin. Seventy-two Salmonella enterica serotype Typhi isolates from humans were also tested. For each isolate, MICs of azithromycin and 15 other antimicrobial agents were determined by broth microdilution. Among the non-Typhi Salmonella isolates, azithromycin MICs among human isolates ranged from 1 to 32 μg/ml, whereas the MICs among the animal and retail meat isolates ranged from 2 to 16 μg/ml and 4 to 16 μg/ml, respectively. Among Salmonella serotype Typhi isolates, the azithromycin MICs ranged from 4 to 16 μg/ml. The highest MIC observed in the present study was 32 μg/ml, and it was detected in three human isolates belonging to serotypes Kentucky, Montevideo, and Paratyphi A. Based on our findings, we propose an epidemiological cutoff value (ECOFF) for wild-type Salmonella of ≤16 μg/ml of azithromycin. The susceptibility data provided could be used in combination with clinical outcome data to determine tentative clinical breakpoints for azithromycin and Salmonella enterica.
doi:10.1128/AAC.00590-11
PMCID: PMC3165283  PMID: 21690279
18.  Differential Gene Expression by RamA in Ciprofloxacin-Resistant Salmonella Typhimurium 
PLoS ONE  2011;6(7):e22161.
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.
doi:10.1371/journal.pone.0022161
PMCID: PMC3139621  PMID: 21811569
19.  Simultaneous Analysis of Multiple Enzymes Increases Accuracy of Pulsed-Field Gel Electrophoresis in Assigning Genetic Relationships among Homogeneous Salmonella Strains▿  
Due to a highly homogeneous genetic composition, the subtyping of Salmonella enterica serovar Enteritidis strains to an epidemiologically relevant level remains intangible for pulsed-field gel electrophoresis (PFGE). We reported previously on a highly discriminatory PFGE-based subtyping scheme for S. enterica serovar Enteritidis that relies on a single combined cluster analysis of multiple restriction enzymes. However, the ability of a subtyping method to correctly infer genetic relatedness among outbreak strains is also essential for effective molecular epidemiological traceback. In this study, genetic and phylogenetic analyses were performed to assess whether concatenated enzyme methods can cluster closely related salmonellae into epidemiologically relevant hierarchies. PFGE profiles were generated by use of six restriction enzymes (XbaI, BlnI, SpeI, SfiI, PacI, and NotI) for 74 strains each of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium. Correlation analysis of Dice similarity coefficients for all pairwise strain comparisons underscored the importance of combining multiple enzymes for the accurate assignment of genetic relatedness among Salmonella strains. The mean correlation increased from 81% and 41% for single-enzyme PFGE up to 99% and 96% for five-enzyme combined PFGE for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains, respectively. Data regressions approached 100% correlation among Dice similarities for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains when a minimum of six enzymes were concatenated. Phylogenetic congruence measures singled out XbaI, BlnI, SfiI, and PacI as most concordant for S. enterica serovar Enteritidis, while XbaI, BlnI, and SpeI were most concordant among S. enterica serovar Typhimurium strains. Together, these data indicate that PFGE coupled with sufficient enzyme numbers and combinations is capable of discerning accurate genetic relationships among Salmonella serovars comprising highly homogeneous strain complexes.
doi:10.1128/JCM.00120-10
PMCID: PMC3020462  PMID: 20980570
20.  Plasmid-mediated Quinolone Resistance among Non-TyphiSalmonella enterica Isolates, USA 
Emerging Infectious Diseases  2010;16(11):1789-1791.
We determined the prevalence of plasmid-mediated quinolone resistance mechanisms among non-Typhi Salmonella spp. isolated from humans, food animals, and retail meat in the United States in 2007. Six isolates collected from humans harbored aac(6′)Ib-cr or a qnr gene. Most prevalent was qnrS1. No animal or retail meat isolates harbored a plasmid-mediated mechanism.
doi:10.3201/eid1611.100464
PMCID: PMC3294515  PMID: 21029547
Salmonella enterica; bacteria; antimicrobial drug resistance; fluoroquinolones; quinolone resistance; United States; dispatch
21.  Presence and Characterization of Shiga Toxin-Producing Escherichia coli and Other Potentially Diarrheagenic E. coli Strains in Retail Meats▿  
To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx1 and stx2, 2 positive for stx1, and 10 positive for stx2. The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx2 genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.
doi:10.1128/AEM.01968-09
PMCID: PMC2837998  PMID: 20080990
22.  Antimicrobial Resistance-Conferring Plasmids with Similarity to Virulence Plasmids from Avian Pathogenic Escherichia coli Strains in Salmonella enterica Serovar Kentucky Isolates from Poultry▿ †  
Applied and Environmental Microbiology  2009;75(18):5963-5971.
Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, is less commonly isolated from ill humans. The multidrug-resistant isolate S. Kentucky CVM29188, isolated from a chicken breast sample in 2003, contains three plasmids (146,811 bp, 101,461 bp, and 46,121 bp), two of which carry resistance determinants (pCVM29188_146 [strAB and tetRA] and pCVM29188_101 [blaCMY-2 and sugE]). Both resistance plasmids were transferable by conjugation, alone or in combination, to S. Kentucky, Salmonella enterica serovar Newport, and Escherichia coli recipients. pCVM29188_146 shares a highly conserved plasmid backbone of 106 kb (>90% nucleotide identity) with two virulence plasmids from avian pathogenic Escherichia coli strains (pAPEC-O1-ColBM and pAPEC-O2-ColV). Shared avian pathogenic E. coli (APEC) virulence factors include iutA iucABCD, sitABCD, etsABC, iss, and iroBCDEN. PCR analyses of recent (1997 to 2005) S. Kentucky isolates from food animal, retail meat, and human sources revealed that 172 (60%) contained similar APEC-like plasmid backbones. Notably, though rare in human- and cattle-derived isolates, this plasmid backbone was found at a high frequency (50 to 100%) among S. Kentucky isolates from chickens within the same time span. Ninety-four percent of the APEC-positive isolates showed resistance to tetracycline and streptomycin. Together, our findings of a resistance-conferring APEC virulence plasmid in a poultry-derived S. Kentucky isolate and of similar resistance/virulence plasmids in most recent S. Kentucky isolates from chickens and, to lesser degree, from humans and cattle highlight the need for additional research in order to examine the prevalence and spread of combined virulence and resistance plasmids in bacteria in agricultural, environmental, and clinical settings.
doi:10.1128/AEM.00786-09
PMCID: PMC2747853  PMID: 19648374
23.  Campylobacter-Induced Interleukin-8 Secretion in Polarized Human Intestinal Epithelial Cells Requires Campylobacter-Secreted Cytolethal Distending Toxin- and Toll-Like Receptor-Mediated Activation of NF-κB ▿  
Infection and Immunity  2008;76(10):4498-4508.
Campylobacter jejuni and Campylobacter coli colonize and infect the intestinal epithelium and cause acute inflammatory diarrhea. The intestinal epithelium serves as a physical barrier to, and a sensor of, bacterial infection by secreting proinflammatory cytokines. This study examined the mechanisms for Campylobacter-induced secretion of the proinflammatory chemokine interleukin-8 (IL-8) by using polarized T84 human colonic epithelial cells as a model. C. jejuni increased the secretion of both IL-8 and tumor necrosis factor alpha (TNF-α) in polarized epithelial cells. However, the increase in IL-8 secretion was independent of Campylobacter-stimulated TNF-α secretion. Polarized T84 cells secreted IL-8 predominantly to the basolateral medium independently of the inoculation direction. While there was a significant correlation between the levels of IL-8 secretion and Campylobacter invasion, all 11 strains tested increased IL-8 secretion by polarized T84 cells despite their differences in adherence, invasion, and transcytosis efficiencies. Cell-free supernatants of Campylobacter-T84-cell culture increased IL-8 secretion to levels similar to those induced by live bacterial inoculation. The ability of the supernatant to induce IL-8 secretion was reduced by flagellum and cytolethal distending toxin (CDT) gene mutants, treatment of the supernatant with protease K or heat, or treatment of T84 cells with the Toll-like receptor (TLR) inhibitor MyD88 inhibitory peptide or chloroquine. NF-κB inhibitors or cdtB mutation plus MyD88 inhibitor, but not flaA cdtB double mutations, abolished the ability of the supernatant to induce IL-8 secretion. Taken together, our results demonstrate that Campylobacter-induced IL-8 secretion requires functional flagella and CDT and depends on the activation of NF-κB through TLR signaling and CDT in human intestinal epithelial cells.
doi:10.1128/IAI.01317-07
PMCID: PMC2546826  PMID: 18644884
24.  Identification and Characterization of Shiga Toxin Type 2 Variants in Escherichia coli Isolates from Animals, Food, and Humans▿  
Applied and Environmental Microbiology  2008;74(18):5645-5652.
There is considerable heterogeneity among the Shiga toxin type 2 (Stx2) toxins elaborated by Shiga toxin-producing Escherichia coli (STEC). One such Stx2 variant, the Stx2d mucus-activatable toxin (Stx2dact), is rendered more toxic by the action of elastase present in intestinal mucus, which cleaves the last two amino acids of the A2 portion of the toxin A subunit. We screened 153 STEC isolates from food, animals, and humans for the gene encoding Stx2dact by using a novel one-step PCR procedure. This method targeted the region of stx2dact that encodes the elastase recognition site. The presence of stx2dact was confirmed by DNA sequencing of the complete toxin genes. Seven STEC isolates from cows (four isolates), meat (two isolates), and a human (one isolate) that carried the putative stx2dact gene were identified; all were eae negative, and none was the O157:H7 serotype. Three of the isolates (CVM9322, CVM9557, and CVM9584) also carried stx1, two (P1332 and P1334) carried stx1 and stx2c, and one (CL-15) carried stx2c. One isolate, P1130, harbored only stx2dact. The Vero cell cytotoxicities of supernatants from P1130 and stx1 deletion mutants of CVM9322, CVM9557, and CVM9584 were increased 13- to 30-fold after treatment with porcine elastase. Thus, Stx2dact-producing strains, as detected by our one-step PCR method, can be isolated not only from humans, as previously documented, but also from food and animals. The latter finding has important public health implications based on a recent report from Europe of a link between disease severity and infection with STEC isolates that produce Stx2dact.
doi:10.1128/AEM.00503-08
PMCID: PMC2547040  PMID: 18658282
25.  Antimicrobial Resistance Genes Associated with Salmonella enterica Serovar Newport Isolates from Food Animals▿  
Salmonella enterica serotype Newport is an important cause of salmonellosis, with strains increasingly being resistant to multiple antimicrobial agents. The increase is associated with the acquisition of multiple resistance genes. This study characterizes the genetic basis of resistance of serotype Newport isolates collected from veterinary sources by PCR and DNA sequencing analysis.
doi:10.1128/AAC.00842-07
PMCID: PMC2223891  PMID: 17967918

Results 1-25 (41)