PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
author:("Zhang, afei")
1.  Highly uniform hole spacing micro brushes based on aligned carbon nanotube arrays 
Nanoscale Research Letters  2013;8(1):501.
Highly uniform hole spacing micro brushes were fabricated based on aligned carbon nanotube (CNT) arrays synthesized by chemical vapor deposition method with the assistance of anodic aluminum oxide (AAO) template. Different micro brushes from CNT arrays were constructed on silicon, glass, and polyimide substrates, respectively. The micro brushes had highly uniform hole spacing originating from the regularly periodic pore structure of AAO template. The CNT arrays, serving as bristles, were firmly grafted on the substrates. The brushes can easily clean particles with scale of micrometer on the surface of silicon wafer and from the narrow spaces between the electrodes in a series of cleaning experiments. The results show the potential application of the CNT micro brushes as a cleaning tool in microelectronics manufacture field.
doi:10.1186/1556-276X-8-501
PMCID: PMC3879083  PMID: 24274897
Micro brushes; Carbon nanotube arrays; Chemical vapor deposition
2.  Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene 
Scientific Reports  2013;3:2636.
Mass production of high-quality graphene nanosheets (GNs) is essential for practical applications. We report that oxidation of graphite by low concentration KMnO4 at relatively high temperature (60°C) leads to edge-selectively oxidized graphite (EOG) which preserves the high crystalline graphitic structure on its basal planes while the edges are functionalized by oxygen-containing groups. Long-chain tetradecyl-ammonium salt (C14N+) could be spontaneously intercalated into EOG to form intercalated EOG-C14N+ compounds. Gentle and short-time sonication of EOG-C14N+ in toluene can full exfoliate EOG into edge-oxidized graphene nanosheets (EOGNs) with concentration of 0.67 mg/ml, monolayer population up to 90% and lateral size from 1 μm to >100 μm. The EOG and EOGN films show excellent electrical conductance, which is far superior to their graphene oxide (GO) counterparts. Our method provides an efficient way to produce high-quality GNs, and the resultant EOG also can be directly used for production of multifunctional materials and devices.
doi:10.1038/srep02636
PMCID: PMC3769650  PMID: 24022463
3.  Paper-like graphene-Ag composite films with enhanced mechanical and electrical properties 
In this paper, we have reported that paper-like graphene-Ag composite films could be prepared by a facile and novel chemical reduction method at a large scale. Using ascorbic acid as a reducing agent, graphene oxide films dipped in Ag+ aqueous solutions can be easily reduced along with the decoration of different sizes of Ag particles distributed uniformly. The results reveal that the obtained films exhibit improved mechanical properties with the enhancement of tensile strength and Young's modulus by as high as 82% and 136%, respectively. The electrical properties of graphene-Ag composite films were studied as well, with the sheet resistance of which reaching lower than approximately 600 Ω/□. The graphene-Ag composite films can be expected to find interesting applications in the area of nanoelectronics, sensors, transparent electrodes, supercapacitors, and nanocomposites.
doi:10.1186/1556-276X-8-32
PMCID: PMC3602053  PMID: 23324465
Graphene; Ag particles; Composite films; Graphene oxide; In situ reduction; Graphene paper; Electrical properties; Mechanical properties
4.  Highly enhanced gas sensing in single-walled carbon nanotube-based thin-film transistor sensors by ultraviolet light irradiation 
Nanoscale Research Letters  2012;7(1):644.
Single-walled carbon nanotube (SWCNT) random networks are easily fabricated on a wafer scale, which provides an attractive path to large-scale SWCNT-based thin-film transistor (TFT) manufacturing. However, the mixture of semiconducting SWCNTs and metallic SWCNTs (m-SWCNTs) in the networks significantly limits the TFT performance due to the m-SWCNTs dominating the charge transport. In this paper, we have achieved a uniform and high-density SWCNT network throughout a complete 3-in. Si/SiO2 wafer using a solution-based assembly method. We further utilized UV radiation to etch m-SWCNTs from the networks, and a remarkable increase in the channel current on/off ratio (Ion/Ioff) from 11 to 5.6 × 103 was observed. Furthermore, we used the SWCNT-TFTs as gas sensors to detect methyl methylphosphonate, a stimulant of benchmark threats. It was found that the SWCNT-TFT sensors treated with UV radiation show a much higher sensitivity and faster response to the analytes than those without treatment with UV radiation.
doi:10.1186/1556-276X-7-644
PMCID: PMC3576247  PMID: 23176557
Single-walled carbon nanotubes; Gas sensor; UV radiation; Thin-film transistor
5.  Gorham-Stout syndrome affecting the left mandible: A case report 
Gorham-Stout syndrome is an extremely rare condition in which spontaneous, progressive resorption of bone occurs. Owing to its low incidence and variable clinical presentation, the diagnosis is often missed or delayed, and at present, there are no specific guidelines for its treatment. We present the case of a 20-year-old male diagnosed with Gorham-Stout syndrome with involvement of the left mandible, and discuss its diagnostic and therapeutic features.
doi:10.3892/etm.2012.793
PMCID: PMC3524277  PMID: 23251259
Gorham-Stout syndrome; osteolysis; left mandible
6.  IL-6 upregulation contributes to the reduction of miR-26a expression in hepatocellular carcinoma cells 
A recent study showed that miR-26a is downregulated in hepatocellular carcinoma tissues and that this downregulation is an independent predictor of survival. Interestingly, the same study also reported that miR-26a downregulation causes a concomitant elevation of IL-6 expression. Because miR-26a expression was found to be transcriptionally downregulated by oncogene c-Myc in various cancers, and the expression of c-Myc was increased by IL-6 stimulation, we hypothesized that IL-6 contributes to reduction of miR-26a in hepatocellular carcinoma. Serum IL-6 was measured by ELISA and miR-26a was detected by qRT-PCR. The data of 30 patients with hepatocellular carcinoma who had undergone surgical tumor resection revealed that serum IL-6 could be considered to be a predictor of survival up to 5 years for hepatocellular carcinoma patients (log-rank test, P < 0.05). We observed that the serum IL-6 concentration was inversely correlated with miR-26a expression in cancerous tissues (Pearson correlation test, r = -0.651, P < 0.01). Furthermore, by in vitro experiments with HepG2 cells, we showed that IL-6 stimulation can lead to miR-26a suppression via c-Myc activation, whereas in normal hepatocyte LO2 cells incubation with IL-6 had no significant effect on miR-26a expression. Taken together, these results indicate that miR-26a reduction in hepatocellular carcinoma might be due to IL-6 upregulation.
doi:10.1590/S0100-879X2012007500155
PMCID: PMC3854351  PMID: 23011405
MiR-26a; IL-6; c-Myc; Hepatocellular carcinoma; Carcinoma prognosis
7.  Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells 
Clinics  2012;67(9):1093-1099.
OBJECTIVE:
Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells.
METHODS:
Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects.
RESULTS:
Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice.
CONCLUSIONS:
Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new therapy against hepatocellular carcinoma, especially for patients with poor liver tolerance.
doi:10.6061/clinics/2012(09)18
PMCID: PMC3438252  PMID: 23018309
Sorafenib; Vitamin K2; Growth; Hepatocellular Carcinoma
8.  Spontaneous formation of graphene-like stripes on high-index diamond C(331) surface 
Nanoscale Research Letters  2012;7(1):460.
We employ first-principles density functional theory calculations to study the surface reconstruction, energetic stability, and electronic structure of diamond C(331) surface. Spontaneous formation of graphene-like stripes on the reconstructed surface is found to occur as the surface terrace C atoms transform from sp3 to sp2 hybridization upon structural relaxation. The comparison of the calculated absolute surface energies of C(331), C(111), and C(110) surfaces demonstrates the energetic stability of the graphitic-like C(331) surface. Local density of electronic states analysis reveals the occurrence of localized electronic states near the Fermi level, which may have a significant impact on the surface conductivity.
doi:10.1186/1556-276X-7-460
PMCID: PMC3552805  PMID: 22898095
Surface reconstruction; Density functional theory; Graphene; Diamond; 68.35.bg; 68.47.Fg; 68.35.Md
9.  Doping of vanadium to nanocrystalline diamond films by hot filament chemical vapor deposition 
Nanoscale Research Letters  2012;7(1):441.
Doping an impure element with a larger atomic volume into crystalline structure of buck crystals is normally blocked because the rigid crystalline structure could not tolerate a larger distortion. However, this difficulty may be weakened for nanocrystalline structures. Diamonds, as well as many semiconductors, have a difficulty in effective doping. Theoretical calculations carried out by DFT indicate that vanadium (V) is a dopant element for the n-type diamond semiconductor, and their several donor state levels are distributed between the conduction band and middle bandgap position in the V-doped band structure of diamond. Experimental investigation of doping vanadium into nanocrystalline diamond films (NDFs) was first attempted by hot filament chemical vapor deposition technique. Acetone/H2 gas mixtures and vanadium oxytripropoxide (VO(OCH2CH2CH3)3) solutions of acetone with V and C elemental ratios of 1:5,000, 1:2,000, and 1:1,000 were used as carbon and vanadium sources, respectively. The resistivity of the V-doped NDFs decreased two orders with the increasing V/C ratios.
doi:10.1186/1556-276X-7-441
PMCID: PMC3434085  PMID: 22873631
Nanocrystalline diamond; Vanadium dopant; Donor state levels; Structural distortion toleration
10.  M2-polarized macrophages promote metastatic behavior of Lewis lung carcinoma cells by inducing vascular endothelial growth factor-C expression 
Clinics  2012;67(8):901-906.
OBJECTIVES:
Tumor-associated macrophages that generally exhibit an alternatively activated (M2) phenotype have been linked to tumor progression and metastasis. However, the role of M2-polarized macrophages in the growth and metastasis of lung adenocarcinoma remains enigmatic. The aim of this study was to explore the effect of M2 macrophages on the proliferation and migration of mouse Lewis lung carcinoma cells and tumor-induced lymphangiogenesis.
METHODS:
Trypan blue staining and the Transwell migration assay were performed to evaluate the effects of activated (M1 or M2) macrophages on the proliferation and migration of Lewis cells. Furthermore, vascular endothelial growth factor-C expression in Lewis cells and nitric oxide secretion from activated macrophages were detected during the co-culture assay. Following treatment with activated macrophages, lymphatic endothelial cells differentiated into capillary-like structures, and the induction of Lewis cell migration was assessed using a two-dimensional Matrigel-based assay.
RESULTS:
In the co-culture Transwell system, the proliferation and migration of Lewis cells were promoted by M2 macrophages. Moreover, the co-culture significantly increased the expression of vascular endothelial growth factor-C by Lewis cells and reduced the secretion of nitric oxide from M2 macrophages, which subsequently led to the capillary morphogenesis of lymphatic endothelial cells. Interestingly, following co-culture with Lewis cells, the function of RAW264.7 cells was polarized toward that of the M2 macrophage phenotype.
CONCLUSION:
M2-polarized macrophages promoted the metastatic behavior of Lewis cells by inducing vascular endothelial growth factor-C expression. Thus, the interruption of signaling between M2 macrophages and Lewis cells may be considered to be a new therapeutic strategy.
doi:10.6061/clinics/2012(08)08
PMCID: PMC3416895  PMID: 22948457
M2-polarized macrophages; Lewis lung carcinoma; Proliferation; Migration; Lymphangiogenesis
11.  Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation 
Nanoscale Research Letters  2012;7(1):347.
Cu2O p-type semiconductor hollow porous microspheres have been prepared by using a simple soft-template method at room temperature. The morphology of as-synthesized samples is hollow spherical structures with the diameter ranging from 200 to 500 nm, and the surfaces of the spheres are rough, porous and with lots of channels and folds. The photocatalytic activity of degradation of methyl orange (MO) under visible light irradiation was investigated by UV-visible spectroscopy. The results show that the hollow porous Cu2O particles were uniform in diameters and have an excellent ability in visible light-induced degradation of MO. Meanwhile, the growth mechanism of the prepared Cu2O was also analyzed. We find that sodium dodecyl sulfate acted the role of soft templates in the synthesis process. The hollow porous structure was not only sensitive to the soft template but also to the amount of reagents.
doi:10.1186/1556-276X-7-347
PMCID: PMC3443013  PMID: 22738162
Cu2O; Hollow porous microspheres; Photocatalytic; Visible light
12.  Functionalized self-assembled monolayers on mesoporous silica nanoparticles with high surface coverage 
Nanoscale Research Letters  2012;7(1):334.
Mesoporous silica nanoparticles (MSNs) containing vinyl-, propyl-, isobutyl- and phenyl functionalized monolayers were reported. These functionalized MSNs were prepared via molecular self-assembly of organosilanes on the mesoporous supports. The relative surface coverage of the organic monolayers can reach up to 100% (about 5.06 silanes/nm2). These monolayer functionalize MSNs were analyzed by a number of techniques including transmission electron microscope, fourier transform infrared spectroscopy, X-ray diffraction pattern, cross-polarized Si29 MAS NMR spectroscopy, and nitrogen sorption measurement. The main elements (i.e., the number of absorbed water, the reactivity of organosilanes, and the stereochemistry of organosilane) that greatly affected the surface coverage and the quality of the organic functionalized monolayers on MSNs were fully discussed. The results show that the proper amount of physically absorbed water, the use of high active trichlorosilanes, and the functional groups with less steric hindrance are essential to generate MSNs with high surface coverage of monolayers.
doi:10.1186/1556-276X-7-334
PMCID: PMC3475074  PMID: 22720819
13.  ATP11c is critical for phosphatidylserine internalization and B lymphocyte differentiation 
Nature Immunology  2011;12(5):441-449.
Subcompartments of the plasma membrane are believed to be critical for lymphocyte responses but few genetic tools exist to test their function. Here we describe a new X-linked B cell deficiency syndrome in mice caused by mutations in Atp11c, a member of the P4 ATPase family thought to serve as flippases concentrating aminophospholipids in the cytoplasmic leaflet of cell membranes. Defective ATP11c decreased the rate of phosphatidylserine translocation in pro-B cells, greatly reduced pre-B and B cell numbers independent of Bcl2-inhibited apoptosis or immunoglobulin gene rearrangement and abolished pre-B cell expansion in response to an Il7 transgene. The only other abnormalities noted were anemia, hyperbilirubinemia and hepatocellular carcinoma. These results identify an intimate connection between phospholipid transport and B lymphocyte function.
doi:10.1038/ni.2011
PMCID: PMC3272780  PMID: 21423173
14.  E2F1: A potential negative regulator of hTERT transcription in normal cells upon activation of oncogenic c-Myc 
Summary
Previous studies have revealed that the link between c-Myc and E2F1 pathway plays a pivotal role in regulating cell growth and death. Human telomerase reverse transcriptase (hTERT), activation of which is required for cell immortalization and transformation, has been confirmed to be a direct transcriptional target of c-Myc. It is of note that E2F1, which is also a direct transcriptional target of c-Myc, can bind the hTERT promoter and repress its expression. Thus, although oncogene c-Myc can be activated in normal cells, for the subsequent induction of E2F1, it may still be insufficient to trigger the expression of hTERT. This negative feedback regulation, if it exists, may be another mechanism for normal cells to control the transmission of c-Myc-mediated oncogenic signals. In this article, we reviewed current knowledge about the crosstalk among c-Myc, E2F1 and hTERT, with an emphasis on the hypothesis that E2F1 negatively regulates c-Myc-induced hTERT transcription. Additionally, we postulated that the miR-17-92 cluster-mediated regulation of c-Myc and E2F1 expression may be of particular importance for the repression of hTERT transcription.
doi:10.12659/MSM.882192
PMCID: PMC3560676  PMID: 22207128
E2F1; hTERT; c-Myc; miR-17-92 cluster; feedback regulation
15.  ENU Mutagenesis Screen to Establish Motor Phenotypes in Wild-Type Mice and Modifiers of a Pre-Existing Motor Phenotype in Tau Mutant Mice 
Modifier screening is a powerful genetic tool. While not widely used in the vertebrate system, we applied these tools to transgenic mouse strains that recapitulate key aspects of Alzheimer's disease (AD), such as tau-expressing mice. These are characterized by a robust pathology including both motor and memory impairment. The phenotype can be modulated by ENU mutagenesis, which results in novel mutant mouse strains and allows identifying the underlying gene/mutation. Here we discuss this strategy in detail. We firstly obtained pedigrees that modify the tau-related motor phenotype, with mapping ongoing. We further obtained transgene-independent motor pedigrees: (i) hyperactive, circling ENU 37 mice with a causal mutation in the Tbx1 gene—the complete knock-out of Tbx1 models DiGeorge Syndrome; (ii) ENU12/301 mice that show sudden jerky movements and tremor constantly; they have a causal mutation in the Kcnq1 gene, modelling aspects of the Romano-Ward and Jervell and Lange-Nielsen syndromes; and (iii) ENU16/069 mice with tremor and hypermetric gait that have a causal mutation in the Mpz (Myelin Protein Zero) gene, modelling Charcot-Marie-Tooth disease type 1 (CMT1B). Together, we provide evidence for a real potential of an ENU mutagenesis to dissect motor functions in wild-type and tau mutant mice.
doi:10.1155/2011/130947
PMCID: PMC3246812  PMID: 22219655
16.  M2-Polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma 
Clinics  2011;66(11):1879-1886.
OBJECTIVES:
Tumor-associated macrophages have been implicated in promoting tumor growth, progression and metastasis. However, the activated phenotype (M1 or M2) of tumor-associated macrophages remains unknown in solid tumors. Therefore, this study examined the density and prognostic significance of M2-polarized tumor-associated macrophages in lung adenocarcinoma.
METHODS:
Tumor specimens from 65 lung adenocarcinoma patients were assessed by ELISA for Th1/Th2 cytokine concentrations. The activated phenotype (M1 or M2) of tumor-associated macrophages was determined utilizing immunofluorescence staining. Additionally, to evaluate lymphangiogenesis, peritumoral lymphatic microvessel density was measured using D2-40. The correlation between tumor-associated macrophage subtype and overall patient survival was analyzed using the Kaplan-Meier method and compared using the log-rank test.
RESULTS:
A shift toward Th2 cytokine expression was detected within lung adenocarcinoma microenvironments. Approximately 79.71±16.27% of tumor-associated macrophages were M2 polarized; the remaining 20.35±5.31% were M1 polarized. The infiltration of M2-polarized macrophages was significantly associated with P-TNM staging and lymph node metastasis. The peritumoral lymphatic microvessel density was significantly higher in the high M2-polarized tumor-associated macrophage group than in the low M2-polarized tumor-associated macrophage group. A significant difference in overall patient survival was detected not only between patients with tumors with high and low macrophage counts but also between patients with tumors with high and low counts of M2-polarized macrophages.
CONCLUSION:
Tumor-associated macrophages in lung adenocarcinoma have an M2-polarized subtype and are associated with poor prognoses, perhaps resulting from accelerated lymphangiogenesis and lymph node metastasis.
doi:10.1590/S1807-59322011001100006
PMCID: PMC3203959  PMID: 22086517
M2-polarized macrophages; Tumor-associated macrophages; Lymphangiogenesis; Lung adenocarcinoma; Prognosis
17.  A one-dimensional extremely covalent material: monatomic carbon linear chain 
Nanoscale Research Letters  2011;6(1):577.
Polyyne and cumulene of infinite length as the typical covalent one-dimensional (1D) monatomic linear chains of carbon have been demonstrated to be metallic and semiconductor (Eg = 1.859 eV), respectively, by first-principles calculations. Comparing with single-walled carbon nanotubes, the densities are evidently low and the thermodynamic properties are similar below room temperature but much different at the high temperature range. Polyyne possesses a Young's modulus as high as 1.304 TPa, which means it is even much stiffer than carbon nanotubes and to be the superlative strong 1D material along the axial direction. The Young's modulus of cumulene is estimated to be 760.78 GPa. In addition, polyyne is predicted to be as a one-dimensional electronic material with very high mobility.
doi:10.1186/1556-276X-6-577
PMCID: PMC3223247  PMID: 22040162
carbon atomic chains; Young's modulus; heat capacity; single-walled carbon nanotubes
18.  Rapid large-scale preparation of ZnO nanowires for photocatalytic application 
Nanoscale Research Letters  2011;6(1):536.
ZnO nanowires are a promising nanomaterial for applications in the fields of photocatalysis, nano-optoelectronics, and reinforced composite materials. However, the challenge of producing large-scale ZnO nanowires has stunted the development and practical utilization of ZnO nanowires. In this study, a modified carbothermal reduction method for preparing large-scale ZnO nanowires in less than 5 min is reported. The preparation was performed in a quartz tube furnace at atmospheric pressure without using any catalysts. A mixed gas of air and N2 with a volume ratio of 45:1 was used as the reactive and carrier gas. About 0.8 g ZnO nanowires was obtained using 1 g ZnO and 1 g graphite powder as source materials. The obtained nanowires exhibited a hexagonal wurtzite crystal structure with an average diameter of about 33 nm. Good photocatalytic activity of the nanowires toward the photodegradation of methylene blue dye under UV irradiation was also demonstrated.
doi:10.1186/1556-276X-6-536
PMCID: PMC3212074  PMID: 21968032
19.  Template-free Synthesis of One-dimensional Cobalt Nanostructures by Hydrazine Reduction Route 
One-dimensional cobalt nanostructures with large aspect ratio up to 450 have been prepared via a template-free hydrazine reduction route under external magnetic field assistance. The morphology and properties of cobalt nanostructures were characterized by scanning electron microscopy, X-ray diffractometer, and vibrating sample magnetometer. The roles of the reaction conditions such as temperature, concentration, and pH value on morphology and magnetic properties of fabricated Co nanostructures were investigated. This work presents a simple, low-cost, environment-friendly, and large-scale production approach to fabricate one-dimensional magnetic Co materials. The resulting materials may have potential applications in nanodevice, catalytic agent, and magnetic recording.
doi:10.1007/s11671-010-9807-7
PMCID: PMC3212205
Cobalt nanowires; Magnetic field assistance; Hydration hydrazine reduction
20.  Theoretical Simulation on the Assembly of Carbon Nanotubes Between Electrodes by AC Dielectrophoresis 
Nanoscale Research Letters  2008;4(2):157-164.
The assembly of single-walled carbon nanotubes (SWCNTs) using the AC dielectrophoresis technique is studied theoretically. It is found that the comb electrode bears better position control of SWCNTs compared to the parallel electrode. In the assembly, when some SWCNTs bridge the electrode first, they can greatly alter the local electrical field so as to “screen off” later coming SWCNTs, which contributes to the formation of dispersed SWCNT array. The screening distance scales with the gap width of electrodes and the length of SWCNTs, which provides a way to estimate the assembled density of SWCNTs. The influence of thermal noise on SWCNTs alignment is also analyzed in the simulation. It is shown that the status of the array distribution for SWCNTs is decided by the competition between the thermal noise and the AC electric-field strength. This influence of the thermal noise can be suppressed by using higher AC voltage to assemble the SWCNTs.
doi:10.1007/s11671-008-9217-2
PMCID: PMC2893708  PMID: 20596496
Single-walled carbon nanotubes (SWCNTs); AC dielectrophoresis; Simulation
21.  Theoretical Simulation on the Assembly of Carbon Nanotubes Between Electrodes by AC Dielectrophoresis 
Nanoscale Research Letters  2008;4(2):157-164.
The assembly of single-walled carbon nanotubes (SWCNTs) using the AC dielectrophoresis technique is studied theoretically. It is found that the comb electrode bears better position control of SWCNTs compared to the parallel electrode. In the assembly, when some SWCNTs bridge the electrode first, they can greatly alter the local electrical field so as to “screen off” later coming SWCNTs, which contributes to the formation of dispersed SWCNT array. The screening distance scales with the gap width of electrodes and the length of SWCNTs, which provides a way to estimate the assembled density of SWCNTs. The influence of thermal noise on SWCNTs alignment is also analyzed in the simulation. It is shown that the status of the array distribution for SWCNTs is decided by the competition between the thermal noise and the AC electric-field strength. This influence of the thermal noise can be suppressed by using higher AC voltage to assemble the SWCNTs.
doi:10.1007/s11671-008-9217-2
PMCID: PMC2893708  PMID: 20596496
Single-walled carbon nanotubes (SWCNTs); AC dielectrophoresis; Simulation
22.  Interaction of Gold With Red Blood Cells 
Metal-Based Drugs  1994;1(5-6):517.
doi:10.1155/MBD.1994.517
PMCID: PMC2364931  PMID: 18476275
23.  Transport of the Dicyanogold(I) Anion 
Metal-Based Drugs  1994;1(5-6):433-443.
We have shown that dicyanogold(I), [Au(CN)2]- is a common metabolite found in blood and urine samples of patients treated with different gold based drugs. Some patients have high levels of gold within their red blood cells (RBCs). Size exclusion and C18 reversed phase chromatography show that the majority of the gold in RBC lysates is bound to protein, but small molecules such as dicyanogold(I) and gold-glutathione complexes are also present. Dicyanogold incubation with red blood cells in vitro leads to a rapid and complete uptake of gold. This uptake is unaffected by DIDS, an inhibitor of the anion channel, but is blocked by the addition of external cyanide. Dicyanogold is also readily taken up by H9 cells, a continuous CD4+ cell line. This uptake is significantly inhibited by N-ethylmaleimide, suggesting a requirement for sulfhydryl groups. Dicyanogold inhibits the replication of the AIDS virus, HIV, in a cell culture model.
doi:10.1155/MBD.1994.433
PMCID: PMC2364916  PMID: 18476261

Results 1-23 (23)