PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  Detection of peptide-binding sites on protein surfaces: The first step towards the modeling and targeting of peptide-mediated interactions 
Proteins  2013;81(12):2096-2105.
Peptide-mediated interactions, in which a short linear motif binds to a globular domain, play major roles in cellular regulation. An accurate structural model of this type of interaction is an excellent starting point for the characterization of the binding specificity of a given peptide-binding domain. A number of different protocols have recently been proposed for the accurate modeling of peptide-protein complex structures, given the structure of the protein receptor and the binding site on its surface. When no information about the peptide binding site(s) is a priori available, there is a need for new approaches to locate peptide-binding sites on the protein surface. While several approaches have been proposed for the general identification of ligand binding sites, peptides show very specific binding characteristics, and therefore, there is a need for robust and accurate approaches that are optimized for the prediction of peptide-binding sites.
Here we present PeptiMap, a protocol for the accurate mapping of peptide binding sites on protein structures. Our method is based on experimental evidence that peptide-binding sites also bind small organic molecules of various shapes and polarity. Using an adaptation of ab initio ligand binding site prediction based on fragment mapping (FTmap), we optimize a protocol that specifically takes into account peptide binding site characteristics. In a high-quality curated set of peptide-protein complex structures PeptiMap identifies for most the accurate site of peptide binding among the top ranked predictions. We anticipate that this protocol will significantly increase the number of accurate structural models of peptide-mediated interactions.
doi:10.1002/prot.24422
PMCID: PMC4183195  PMID: 24123488
protein peptide interactions; FFT sampling; binding site detection; mapping; PeptiDB
2.  Robust Identification of Binding Hot Spots Using Continuum Electrostatics: Application to Hen Egg-White Lysozyme 
Journal of the American Chemical Society  2011;133(51):20668-20671.
Binding hot spots, protein regions with high binding affinity, can be identified by using X-ray crystallography or NMR spectroscopy to screen libraries of small organic molecules that tend to cluster at such hot spots. FTMap, a direct computational analogue of the experimental screening approaches, uses 16 different probe molecules for global sampling of the surface of a target protein on a dense grid and evaluates the energy of interaction using an empirical energy function that includes a continuum electrostatic term. Energy evaluation is based on the fast Fourier transform correlation approach, which allows for the sampling of billions of probe positions. The grid sampling is followed by off-grid minimization that uses a more detailed energy expression with a continuum electrostatics term. FTMap identifies the hot spots as consensus clusters formed by overlapping clusters of several probes. The hot spots are ranked on the basis of the number of probe clusters, which predicts their binding propensity. We applied FTMap to nine structures of hen egg-white lysozyme (HEWL), whose hot spots have been extensively studied by both experimental and computational methods. FTMap found the primary hot spot in site C of all nine structures, in spite of conformational differences. In addition, secondary hot spots in sites B and D that are known to be important for the binding of polysaccharide substrates were found. The predicted probe–protein interactions agree well with those seen in the complexes of HEWL with various ligands and also agree with an NMR-based study of HEWL in aqueous solutions of eight organic solvents. We argue that FTMap provides more complete information on the HEWL binding site than previous computational methods and yields fewer false-positive binding locations than the X-ray structures of HEWL from crystals soaked in organic solvents.
doi:10.1021/ja207914y
PMCID: PMC3244821  PMID: 22092261

Results 1-2 (2)