PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Sudden unexpected death in a mouse model of Dravet syndrome 
The Journal of Clinical Investigation  2013;123(4):1798-1808.
Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death in intractable epilepsies, but physiological mechanisms that lead to SUDEP are unknown. Dravet syndrome (DS) is an infantile-onset intractable epilepsy caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes brain type-I voltage-gated sodium channel NaV1.1. We studied the mechanism of premature death in Scn1a heterozygous KO mice and conditional brain- and cardiac-specific KOs. Video monitoring demonstrated that SUDEP occurred immediately following generalized tonic-clonic seizures. A history of multiple seizures was a strong risk factor for SUDEP. Combined video-electroencephalography-electrocardiography revealed suppressed interictal resting heart-rate variability and episodes of ictal bradycardia associated with the tonic phases of generalized tonic-clonic seizures. Prolonged atropine-sensitive ictal bradycardia preceded SUDEP. Similar studies in conditional KO mice demonstrated that brain, but not cardiac, KO of Scn1a produced cardiac and SUDEP phenotypes similar to those found in DS mice. Atropine or N-methyl scopolamine treatment reduced the incidence of ictal bradycardia and SUDEP in DS mice. These findings suggest that SUDEP is caused by apparent parasympathetic hyperactivity immediately following tonic-clonic seizures in DS mice, which leads to lethal bradycardia and electrical dysfunction of the ventricle. These results have important implications for prevention of SUDEP in DS patients.
doi:10.1172/JCI66220
PMCID: PMC3613924  PMID: 23524966
2.  Autistic behavior in Scn1a+/− mice and rescue by enhanced GABAergic transmission 
Nature  2012;489(7416):385-390.
Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel NaV1.1 causes Dravet Syndrome (DS), a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit, and autism-spectrum behaviors. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviors in DS are poorly understood. Here we show that mice with Scn1a haploinsufficiency display hyperactivity, stereotyped behaviors, social interaction deficits, and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odors and social odors are aversive to Scn1a+/− mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of NaV1.1 channels in forebrain interneurons is sufficient to cause these behavioral and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABAA receptors, completely rescued the abnormal social behaviors and deficits in fear memory in DS mice, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for NaV1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviors in DS.
doi:10.1038/nature11356
PMCID: PMC3448848  PMID: 22914087
3.  Functional Properties and Differential Neuromodulation of Nav1.6 Channels 
The voltage-gated sodium channel Nav1.6 plays unique roles in the nervous system, but its functional properties and neuromodulation are not as well established as for NaV1.2 channels. We found no significant differences in voltage-dependent activation or fast inactivation between NaV1.6 and NaV1.2 channels expressed in non-excitable cells. In contrast, the voltage dependence of slow inactivation was more positive for Nav1.6 channels, they conducted substantially larger persistent sodium currents than Nav1.2 channels, and they were much less sensitive to inhibtion by phosphorylation by cAMP-dependent protein kinase and protein kinase C. Resurgent sodium current, a hallmark of Nav1.6 channels in neurons, was not observed for NaV1.6 expressed alone or with the auxiliary β4 subunit. The unique properties of NaV1.6 channels, together with the resurgent currents that they conduct in neurons, make these channels well-suited to provide the driving force for sustained repetitive firing, a crucial property of neurons.
doi:10.1016/j.mcn.2008.05.009
PMCID: PMC3433175  PMID: 18599309
4.  A BAC transgenic mouse model reveals neuron subtype-specific effects of a Generalized Epilepsy with Febrile Seizures Plus (GEFS+) mutation 
Neurobiology of disease  2009;35(1):91-102.
Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A GEFS+ mutation, R1648H. Mice with the R1648H mutation exhibit a more severe response to the proconvulsant kainic acid compared with mice expressing a control Scn1a transgene. Electrophysiological analysis of dissociated neurons from mice with the R1648H mutation reveal delayed recovery from inactivation and increased use-dependent inactivation only in inhibitory bipolar neurons, as well as a hyperpolarizing shift in the voltage dependence of inactivation only in excitatory pyramidal neurons. These results demonstrate that the effects of SCN1A mutations are cell type-dependent and that the R1648H mutation specifically leads to a reduction in interneuron excitability.
doi:10.1016/j.nbd.2009.04.007
PMCID: PMC2735447  PMID: 19409490
Sodium channel; SCN1A; GEFS+; SMEI; epilepsy; mutation
5.  Di-(2 ethylhexyl) phthalate and flutamide alter gene expression in the testis of immature male rats 
We previously demonstrated that the androgenic and anti-androgenic effects of endocrine disruptors (EDs) alter reproductive function and exert distinct effects on developing male reproductive organs. To further investigate these effects, we used an immature rat model to examine the effects of di-(2 ethylhexyl) phthalate (DEHP) and flutamide (Flu) on the male reproductive system. Immature male SD rats were treated daily with DEHP and Flu on postnatal days (PNDs) 21 to 35, in a dose-dependent manner. As results, the weights of the testes, prostate, and seminal vesicle and anogenital distances (AGD) decreased significantly in response to high doses of DEHP or Flu. Testosterone (T) levels significantly decreased in all DEHP- treated groups, whereas luteinizing hormone (LH) plasma levels were not altered by any of the two treatments at PND 36. However, treatment with DEHP or Flu induced histopathological changes in the testes, wherein degeneration and disorders of Leydig cells, germ cells and dilatation of tubular lumen were observed in a dose-dependent manner. Conversely, hyperplasia and denseness of Leydig, Sertoli and germ cells were observed in rats given with high doses of Flu. The results by cDNA microarray analysis indicated that 1,272 genes were up-regulated by more than two-fold, and 1,969 genes were down-regulated in response to DEHP, Flu or both EDs. These genes were selected based on their markedly increased or decreased expression levels. These genes have been also classified on the basis of gene ontology (e.g., steroid hormone biosynthetic process, regulation of transcription, signal transduction, metabolic process, biosynthetic process...). Significant decreases in gene expression were observed in steroidogenic genes (i.e., Star, Cyp11a1 and Hsd3b). In addition, the expression of a common set of target genes, including CaBP1, Vav2, Plcd1, Lhx1 and Isoc1, was altered following exposure to EDs, suggesting that they may be marker genes to screen for the anti-androgenic or androgenic effects of EDs. Overall, our results demonstrated that exposure to DEHP, Flu or both EDs resulted in a alteration of gene expression in the testes of immature male rats. Furthermore, the toxicological effects of these EDs on the male reproductive system resulted from their anti-androgenic effects. Taken together, these results provide a new insight into the molecular mechanisms underlying the detrimental impacts of EDs, in regards to anti-androgenic effects in humans and wildlife.
doi:10.1186/1477-7827-7-104
PMCID: PMC2760555  PMID: 19781091
6.  Overview of the voltage-gated sodium channel family 
Genome Biology  2003;4(3):207.
Different sodium channels have remarkably similar functional properties, but small changes in sodium-channel function are biologically relevant, as underscored by mutations that cause several human diseases of hyperexcitability.
Selective permeation of sodium ions through voltage-dependent sodium channels is fundamental to the generation of action potentials in excitable cells such as neurons. These channels are large integral membrane proteins and are encoded by at least ten genes in mammals. The different sodium channels have remarkably similar functional properties, but small changes in sodium-channel function are biologically relevant, as underscored by mutations that cause several human diseases of hyperexcitability.
PMCID: PMC153452  PMID: 12620097

Results 1-6 (6)