Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Modulation of Radiation Injury Response in Retinal Endothelial Cells by Quinic Acid Derivative KZ-41 Involves p38 MAPK 
PLoS ONE  2014;9(6):e100210.
Radiation-induced damage to the retina triggers leukostasis, retinal endothelial cell (REC) death, and subsequent hypoxia. Resultant ischemia leads to visual loss and compensatory retinal neovascularization (RNV). Using human RECs, we demonstrated that radiation induced leukocyte adhesion through mechanisms involving p38MAPK, p53, and ICAM-1 activation. Additional phenotypic changes included p38MAPK-dependent tyrosine phosphorylation of the focal adhesion scaffolding protein, paxillin (Tyr118). The quinic acid derivative KZ-41 lessened leukocyte adhesion and paxillin-dependent proliferation via inhibition of p38MAPK-p53-ICAM-1 signaling. Using the murine oxygen-induced retinopathy (OIR) model, we examined the effect of KZ-41 on pathologic RNV. Daily ocular application of a KZ-41-loaded nanoemulsion significantly reduced both the avascular and neovascular areas in harvested retinal flat mounts when compared to the contralateral eye receiving vehicle alone. Our data highlight the potential benefit of KZ-41 in reducing both the retinal ischemia and neovascularization provoked by genotoxic insults. Further research into how quinic acid derivatives target and mitigate inflammation is needed to fully appreciate their therapeutic potential for the treatment of inflammatory retinal vasculopathies.
PMCID: PMC4067294  PMID: 24956278
2.  EDL-360: A Potential Novel Antiglioma Agent 
Glioma is a brain tumor that arises from glial cells or glial progenitor cells, and represents 80% of malignant brain tumor incidence in the United States. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor malignancy with fewer than 8% of patients with GBM surviving for more than 3 years. Over the past 10 years, despite improvement in diagnosis and therapies for cancer, the survival rate for high-grade glioma patients remains dismal. The main focus of our research is to identify potent novel antiglioma small molecules. We previously showed that EDL-360, a tetrahydroisoquinoline (THIQ) analog, as being highly cytotoxic to human glioma cell cultures. Here we show that EDL-360 significantly induced apoptosis in human glioma cell lines (U87 and LN18). However, in normal astrocytic cells, EDL-360 induced a modest G0/G1 cell cycle arrest but did not induce apoptosis. In an attempt to enhance EDL-360 induced cell death, we tested simultaneous treatment with EDL-360 and embelin (an inhibitor of the anti-apoptotic protein, XIAP). We found that, glioma cells had significant lower viability when EDL-360 and embelin were used in combination when compared to EDL-360 alone. We also used combination treatment of EDL-360 with decylubiquinone (dUb), a caspase-9 inhibitor, and found that the combination treatment induced a significant cell death when compared to treatment with EDL-360 alone. This is the first report that suggests that dUb has anticancer activity, and perhaps acts as a XIAP inhibitor. Finally, our in vivo data showed that EDL-360 treatment induced a partial regression in glioma tumorigenesis and induced cell death in the treated tumors as shown by H&E staining. Taken together these data suggests that EDL-360 has a potential therapeutic application for treating glioma, especially when combined with XIAP inhibitors.
PMCID: PMC4285352  PMID: 25574358
Ovarian cancer; PARP inhibitors; Angiogenesis
3.  Mitigation of Radiation Injury by Selective Stimulation of the LPA2 Receptor 
Biochimica et biophysica acta  2013;1831(1):117-125.
Due to its antiapoptotic action, derivatives of the lipid mediator lysophosphatidic acid (LPA) provide potential therapeutic utility in diseases associated with programmed cell death. Apoptosis is one of the major pathophysiological processes elicited by radiation injury to the organism. Consequently, therapeutic explorations applying compounds that mimic the antiapoptotic action of LPA have begun. Here we present a brief account of our decade-long drug discovery effort aimed at developing LPA mimics with a special focus on specific agonists of the LPA2 receptor subtype, which was found to be highly effective in protecting cells from apoptosis. We describe new evidence that 2-((3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propyl)thio)benzoic acid (GRI977143), a prototypic nonlipid agonist specific to the LPA2 receptor subtype, rescues apoptotically condemned cells in vitro and in vivo from injury caused by high-dose γ-irradiation. GRI977143 shows the features of a radiomitigator because it is effective in rescuing the lives of mice from deadly levels of radiation when administered 24 h after radiation exposure. Our findings suggest that by specifically activating LPA2 receptors GRI977143 activates the ERK1/2 prosurvival pathway, effectively reduces Bax translocation to the mitochondrion, attenuates the activation of initiator and effector caspases, reduces DNA fragmentation, and inhibits PARP-1 cleavage associated with γ-irradiation-induced apoptosis. GRI977143 also inhibits bystander apoptosis elicited by soluble proapoptotic mediators produced by irradiated cells. Thus, GRI977143 can serve as a prototype scaffold for lead optimization paving the way to more potent analogs amenable for therapeutic exploration.
PMCID: PMC3491361  PMID: 23127512
LPA; radiomitigator; radioprotection; apoptosis; bystander-apoptosis; distant effects of radiation exposure; countermeasure
4.  Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes 
The discovery that 7-dehydrocholesterol (7DHC) is an excellent substrate for cytochrome P450scc (CYP11A1) opens up new possibilities in biochemistry. To elucidate its biological significance we tested ex-vivo P450scc-dependent metabolism of 7DHC by tissues expressing high and low levels of P450scc activity, placenta and epidermal keratinocytes, respectively. Incubation of human placenta fragments with 7DHC led to its conversion to 7-dehydropregnenolone (7DHP), which was inhibited by DL-aminoglutethimide, and stimulated by forskolin. Final proof for P450scc involvement was provided in isolated placental mitochondria where production of 7DHP was almost completely inhibited by 22R-hydroxycholesterol. 7DHC was metabolized by placental mitochondria at a faster rate than exogenous cholesterol, under both limiting and saturating conditions of substrate transport, consistent with higher catalytic efficiency (kcat/Km) with 7DHC as substrate than with cholesterol. Ex-vivo experiments showed five 5,7-dienal intermediates with MS spectra of dihydroxy and mono-hydroxy-7DHC and retention time corresponding to 20,22(OH)27DHC and 22(OH)7DHC. The chemical structure of 20,22(OH)27DHC was defined by NMR. 7DHP was further metabolized by either placental fragments or placental microsomes to 7-dehydroprogesterone as defined by UV, MS and NMR, and to an additional product with a 5,7-dienal structure and MS corresponding to hydroxy-7DHP. Furthermore, epidermal keratinocytes transformed either exogenous or endogenous 7DHC to 7DHP. 7DHP inhibited keratinocytes proliferation, while the product of its pholytic transformation, pregcalciferol, lost this capability. In conclusion, tissues expressing P450scc can metabolize 7DHC to biologically active 7DHP with 22(OH)7DHC and 20,22(OH)27DHC serving as intermediates, and with further metabolism to 7-dehydroprogesterone and (OH)7DHP.
PMCID: PMC3520099  PMID: 22877869
7-dehydropregnenolone; 7-dehydrocholesterol; CYP11A1; placenta; keratinocytes
5.  Physiological and pharmacokinetic effects of oral 1,3-dimethylamylamine administration in men 
1,3-dimethylamylamine (DMAA) has been a component of dietary supplements and is also used within "party pills," often in conjunction with alcohol and other drugs. Ingestion of higher than recommended doses results in untoward effects including cerebral hemorrhage. To our knowledge, no studies have been conducted to determine both the pharmacokinetic profile and physiologic responses of DMAA.
Eight men reported to the lab in the morning following an overnight fast and received a single 25 mg oral dose of DMAA. Blood samples were collected before and through 24 hours post-DMAA ingestion and analyzed for plasma DMAA concentration using high-performance liquid chromatography–mass spectrometry. Resting heart rate, blood pressure, and body temperature was also measured.
One subject was excluded from the data analysis due to abnormal DMAA levels. Analysis of the remaining seven participants showed DMAA had an oral clearance of 20.02 ± 5 L∙hr-1, an oral volume of distribution of 236 ± 38 L, and terminal half-life of 8.45 ± 1.9 hr. Lag time, the delay in appearance of DMAA in the circulation following extravascular administration, varied among participants but averaged approximately 8 minutes (0.14 ± 0.13 hr). The peak DMAA concentration for all subjects was observed within 3–5 hours following ingestion and was very similar across subjects, with a mean of ~70 ng∙mL-1. Heart rate, blood pressure, and body temperature were largely unaffected by DMAA treatment.
These are the first data to characterize the oral pharmacokinetic profile of DMAA. These findings indicate a consistent pattern of increase across subjects with regards to peak DMAA concentration, with peak values approximately 15–30 times lower than those reported in case studies linking DMAA intake with adverse events. Finally, a single 25 mg dose of DMAA does not meaningfully impact resting heart rate, blood pressure, or body temperature.
Trial registration
PMCID: PMC3852303  PMID: 24090077
1,3-dimethylamylamine; Pharmacokinetics; Dietary supplements
6.  Development of an LC-MS/MS assay to determine plasma pharmacokinetics of the radioprotectant octadecyl thiophosphate (OTP) in monkeys 
Octadecenyl thiophosphate (OTP), a synthetic analog of the lysophospholipid growth factor lysophosphatidic acid (LPA), significantly reduces mortality following a lethal dose of LD80/30 radiation exposure in a mouse model of whole-body irradiation. To facilitate dose scaling between species, we developed a novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) for the preclinical pharmacokinetic characterization of OTP in monkeys. Sample extraction was carried out using a butanol based liquid-liquid extraction method. A partially deuterated OTP analogue was used as internal standard (IS). OTP and IS were separated by reversed-phase liquid chromatography on a C-8 column using 10 mM ammonium acetate and acetonitrile. A triple quadrupole mass spectrometer operating in the negative electrospray ionization mode with multiple reaction monitoring was used to detect OTP and IS transitions of m/z 363.1→95.0 and 403.1→95.0. The method was applied to determine pharmacokinetic parameters in monkeys receiving a single oral OTP dose (3 mg/kg). OTP is readily absorbed with a relatively long half-life which supports further preclinical testing of OTP as a radioprotectant in monkeys.
PMCID: PMC2965032  PMID: 20719582
Octadecenyl thiophosphate (OTP); lysophosphatidic acid (LPA); liquid chromatography/tandem mass spectrometry (LC-MS/MS); pharmacokinetics
7.  Novel Polymorphisms in the Myosin Light Chain Kinase Gene Confer Risk for Acute Lung Injury 
The genetic basis of acute lung injury (ALI) is poorly understood. The myosin light chain kinase (MYLK) gene encodes the nonmuscle myosin light chain kinase isoform, a multifunctional protein involved in the inflammatory response (apoptosis, vascular permeability, leukocyte diapedesis). To examine MYLK as a novel candidate gene in sepsis-associated ALI, we sequenced exons, exon–intron boundaries, and 2 kb of 5′ UTR of the MYLK, which revealed 51 single-nucleotide polymorphisms (SNPs). Potential association of 28 MYLK SNPs with sepsis-associated ALI were evaluated in a case-control sample of 288 European American subjects (EAs) with sepsis alone, subjects with sepsis-associated ALI, or healthy control subjects, and a sample population of 158 African American subjects (AAs) with sepsis and ALI. Significant single locus associations in EAs were observed between four MYLK SNPs and the sepsis phenotype (P < 0.001), with an additional SNP associated with the ALI phenotype (P = 0.03). A significant association of a single SNP (identical to the SNP identified in EAs) was observed in AAs with sepsis (P = 0.002) and with ALI (P = 0.01). Three sepsis risk-conferring haplotypes in EAs were defined downstream of start codon of smooth muscle MYLK isoform, a region containing putative regulatory elements (P < 0.001). In contrast, multiple haplotypic analyses revealed an ALI-specific, risk-conferring haplotype at 5′ of the MYLK gene in both European and African Americans and an additional 3′ region haplotype only in African Americans. These data strongly implicate MYLK genetic variants to confer increased risk of sepsis and sepsis-associated ALI.
PMCID: PMC2644210  PMID: 16399953
MYLK/MLCK; genetic association; SNP; ALI; sepsis
8.  Status of PharmD/PhD Programs in Colleges of Pharmacy: The University of Tennessee Dual PharmD/PhD Program 
To describe the University of Tennessee PharmD/PhD program and assess the prevalence and characteristics of PharmD/PhD programs in the United States.
Survey instruments were mailed in May 2004 to UT dual-degree program participants and deans of US colleges and schools of pharmacy.
University of Tennessee PharmD/PhD students completed more than 30 hours of graduate credit before obtaining their PharmD and 72.2% agreed or strongly agreed that the program met their professional goals. More than 40% of US pharmacy colleges and schools have or plan to have PharmD/PhD programs. A wide variation exists in the level of integration, PhD concentrations offered, entrance requirements, and student benefits. Most schools with PharmD/PhD programs had few students enrolled in the program, but attrition rates were low (<20%) for 69% of the schools.
Dual-degree programs attract and retain pharmacy students in research programs and 47.6% of graduates entered academia and industry.
PMCID: PMC1636914  PMID: 17149422
dual-degree programs; faculty shortage; pharmacy education; PharmD/PhD; graduate education
9.  Detection of MDR1 single nucleotide polymorphisms C3435T and G2677T using real-time polymerase chain reaction: MDR1 single nucleotide polymorphism genotyping assay 
AAPS PharmSci  2002;4(4):89-94.
The objective of this study was to develop a real-time polymerase chain reaction (PCR) method to detect MDR1 (human multidrug resistance gene) single nucleotide polymorphisms (SNPs) C3435T and G2677T. C3435T and G2677T are linked to MDR1*2, which is associated with enhanced efflux activity in vitro. Using the Smart Cycler, an allele-specific real-time PCR-based genotyping method was developed to detect C3435T and G2677T. The MDR1 genotype of human genomic DNA templates was determined by direct DNA sequencing. PCR reactions for genotyping C3435T and G2677T by using allele-specific primers were conducted in separate tubes. An additional nucleotide mismatch at the third position from the 3′ end of each allele-specific primer was used to abrogate nonspecific PCR amplification. The fluorescence emitted by SYBR Green I was monitored to detect formation of specific PCRproducts. PCR growth curves exceeding the threshold cycle were considered positive. Fluorescence melt-curve analysis was used to corroborate results from PCR growth curves. Using PCR growth curves, our assay accurately determined hetero- and homozygosity for C3435T and G2677T. Genotype assignments based on PCR growth curve, melt-curve analysis, agarose gel electrophoresis, and direct DNA sequencing results of PCR products were in perfect agreement. We have developed a rapid MDR1 genotyping method that can be used to assess the contribution of MDR1*2 to pharmacokinetic and pharmacodynamic variability of P-glycoprotein substrates.
PMCID: PMC2751318  PMID: 12646001
P-glycoprotein; single nucleotide polymorphism; real-time polymerase chain reaction

Results 1-9 (9)