PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Early immunisation with dendritic cells after allogeneic bone marrow transplantation elicits graft vs tumour reactivity 
British Journal of Cancer  2013;108(5):1092-1099.
Background:
Perspectives of immunotherapy to cancer mediated by bone marrow transplantation (BMT) in conjunction with dendritic cell (DC)-mediated immune sensitisation have yielded modest success so far. In this study, we assessed the impact of DC on graft vs tumour (GvT) reactions triggered by allogeneic BMT.
Methods:
H2Ka mice implanted with congenic subcutaneous Neuro-2a neuroblastoma (NB, H2Ka) tumours were irradiated and grafted with allogeneic H2Kb bone marrow cells (BMC) followed by immunisation with tumour-inexperienced or tumour-pulsed DC.
Results:
Immunisation with tumour-pulsed donor DC after allogeneic BMT suppressed tumour growth through induction of T cell-mediated NB cell lysis. Early post-transplant administration of DC was more effective than delayed immunisation, with similar efficacy of DC inoculated into the tumour and intravenously. In addition, tumour inexperienced DC were equally effective as tumour-pulsed DC in suppression of tumour growth. Immunisation of DC did not impact quantitative immune reconstitution, however, it enhanced T-cell maturation as evident from interferon-γ (IFN-γ) secretion, proliferation in response to mitogenic stimulation and tumour cell lysis in vitro. Dendritic cells potentiate GvT reactivity both through activation of T cells and specific sensitisation against tumour antigens. We found that during pulsing with tumour lysate DC also elaborate a factor that selectively inhibits lymphocyte proliferation, which is however abolished by humoral and DC-mediated lymphocyte activation.
Conclusion:
These data reveal complex involvement of antigen-presenting cells in GvT reactions, suggesting that the limited success in clinical application is not a result of limited efficacy but suboptimal implementation. Although DC can amplify soluble signals from NB lysates that inhibit lymphocyte proliferation, early administration of DC is a dominant factor in suppression of tumour growth.
doi:10.1038/bjc.2013.39
PMCID: PMC3619065  PMID: 23511628
dendritic cells; graft vs tumour reaction; allogeneic bone marrow transplantation; immunisation; cytotoxic T cells
2.  Immunomodulation with dendritic cells and donor lymphocyte infusion converge to induce graft vs neuroblastoma reactions without GVHD after allogeneic bone marrow transplantation 
British Journal of Cancer  2010;103(10):1597-1605.
Background:
Mounting evidence points to the efficacy of donor lymphocyte infusion (DLI) and immunisation with tumour-pulsed dendritic cells (DC) in generating graft vs leukaemia reactions after allogeneic bone marrow transplantation (BMT). We assessed the efficacy of DLI and DC in generating potent graft vs neuroblastoma tumour (GVT) reactions following allogeneic BMT.
Methods:
Mice bearing congenic (H2Ka) Neuro-2a tumours were grafted with allogeneic (H2Kb) T-cell-depleted bone marrow cells. Tumour-pulsed donor DC (DCNeuro2a) were inoculated (on day +7) in conjunction with donor (H2Kb) and haploidentical (H2Ka/b) lymphocytes.
Results:
Murine Neuro-2a cells elicit immune reactions as efficient as B lymphoma in major histocompatibility complex antigen-disparate mice. Lymphopenia induced by conditioning facilitates GVT, and transition to adaptive immunity is enhanced by simultaneous infusion of and DCNeuro2a and lymphocytes devoid of graft vs host (GVH) activity (H2Ka/b). In variance, the efficacy of DC-mediated immunomodulation was diminished by severe graft vs host disease (GVHD), showing mechanistic dissociation and antagonising potential to GVT.
Conclsions:
The GVHD is not a prerequisite to induce GVT reactivity after allogeneic BMT, but is rather detrimental to induction of anti-tumour immunity by DC-mediated immunomodulation. Simultaneous inoculation of tumour-pulsed donor DC and DLI synergise in stimulation of potent GVT reactions to the extent of eradication of established NB tumours.
doi:10.1038/sj.bjc.6605924
PMCID: PMC2990575  PMID: 20978501
neuroblastoma; allogeneic bone marrow transplantation; dendritic cells; donor lymphocyte infusion; graft vs tumour reaction; graft vs host disease
3.  Salvage high-dose chemotherapy for children with extragonadal germ-cell tumours 
British Journal of Cancer  2005;93(4):412-417.
We reviewed the European Group for Blood and Marrow Transplantation (EBMT) experience with salvage high-dose chemotherapy (HDC) in paediatric patients with extragonadal germ-cell tumour (GCT). A total of 23 children with extragonadal GCT, median age 12 years (range 1–20), were treated with salvage HDC with haematopoietic progenitor cell support. The GCT primary location was intracranial site in nine cases, sacrococcyx in eight, retroperitoneum in four, and mediastinum in two. In all, 22 patients had a nongerminomatous GCT and one germinoma. Nine patients received HDC in first- and 14 in second- or third-relapse situation. No toxic deaths occurred. Overall, 16 of 23 patients (70%) achieved a complete remission. With a median follow-up of 66 months (range 31–173 months), 10 (43%) are continuously disease-free. Of six patients who had a disease recurrence after HDC, one achieved a disease-free status with surgical resection followed by chemotherapy and radiotherapy. In total, 11 patients (48%) are currently disease-free. Eight of 14 patients (57%) with extracranial primary and three of nine patients (33%) with intracranial primary GCT are currently disease-free. HDC induced impressive long-term remissions as salvage treatment in children with extragonadal extracranial GCTs. Salvage HDC should be investigated in prospective trials in these patients.
doi:10.1038/sj.bjc.6602724
PMCID: PMC2361583  PMID: 16106248
extragonadal germ cell tumour; high-dose chemotherapy; salvage therapy; children
4.  Hematopoietic Chimerism Monitoring Based on STRs: Quantitative Platform Performance on Sequential Samples 
Hematopoietic stem cell transplantation (HSCT) creates a donor-recipient cellular chimerism in the patient, which is quantitatively assayed from peripheral blood based on STR-DNA. Since chimerism values often vary across a patient’s samples, it is important to determine to what extent this variability reflects technical aspects of platform performance. This issue is systematically assessed in the current study for the first time. Using the SGM Plus multiplex PCR kit and ABI platform, the longitudinal performance of STR markers was quantitatively evaluated in two chimeric models with true values, and in patient samples (n >500 marker loci). Computation of percent chimerism for each marker, and mean (sample) percent chimerism, standard deviation, and coefficient of variance was performed by our ChimerTrack utility. In chimeric models with known values, individual markers exhibited an accuracy (observed/true) of 88–98%; replication precision was 92–100% true, with a mean error of 2%. Fragment size calling was greater than 99% accurate and precise. Patient results were comparable for markers, relaive to sample means. One source of technical variability in chimerism estimation was allelic differential amplification efficiency. The latter was influenced by signal amplitude, dye label, marker size, and allelic size interval. It can be concluded that long-term chimeric tracking is routinely feasible using this platform in conjunction with ChimerTrack software. Importantly, mean percent chimerism, for any sample, should closely approximate the true chimeric status, with a technical accuracy of 98%. Guidelines are presented for selecting an optimized marker profile.
PMCID: PMC2291760  PMID: 16522860
Chimerism; quantitation; STRs; ssmicrosatellites; stem sscell transplantion; software; hematological malignancies; genetic diseases; PCR; multiplex
5.  Molecular variants of the ATM gene in Hodgkin's disease in children 
British Journal of Cancer  2004;90(2):522-525.
doi:10.1038/sj.bjc.6601522
PMCID: PMC2409549  PMID: 14735203
ATM; Hodgkin lymphoma; mutations
6.  Fasting plasma triglycerides predict the glycaemic response to treatment of Type 2 diabetes by gastric electrical stimulation. A novel lipotoxicity paradigm 
Diabetic Medicine  2013;30(6):687-693.
Background
Non-stimulatory, meal-mediated electrical stimulation of the stomach (TANTALUS-DIAMOND) improves glycaemic control and causes modest weight loss in patients with Type 2 diabetes who are inadequately controlled on oral anti-diabetic medications. The magnitude of the glycaemic response in clinical studies has been variable. A preliminary analysis of data from patients who had completed 6 months of treatment indicated that the glycaemic response to the electrical stimulation was inversely related to the baseline fasting plasma triglyceride level.
Method
An analysis of 40 patients who had had detailed longitudinal studies for 12 months.
Results
Twenty-two patients with fasting plasma triglycerides ≤ 1.7 mmol/l had mean decreases in HbA1c after 3, 6 and 12 months of gastric contraction modulation treatment of −15 ± 2.1 mmol/mol (−1.39 ± 0.20%), −16 ± 2.2 mmol/mol (−1.48 ± 0.20%) and −14 ± 3.0 mmol/mol (−1.31 ± 0.26%), respectively. In contrast, 18 patients with fasting plasma triglyceride > 1.7 mmol/l had mean decreases in HbA1c of −7 ± 1.7 mmol/mol (−0.66 ± 0.16%), −5 ± 1.6 mmol/mol (−0.44 ± 0.18%) and −5 ± 1.7 mmol/mol (−0.42 ± 0.16%), respectively. Pearson's correlation coefficient between fasting plasma triglyceride and decreases in HbA1c at 12 months of treatment was 0.34 (P < 0.05). Homeostasis model assessment of insulin resistance was unchanged during 12 months of treatment in patients with high baseline fasting triglycerides, while it progressively improved in patients with low fasting plasma triglycerides. Patients with low fasting plasma triglycerides had a tendency to lose more weight than those with high fasting plasma triglycerides, but this did not achieve statistical significance.
Conclusions
The data presented suggest the existance of a triglyceride lipotoxic mechanism that interferes with gastric/neural mediated pathways that can regulate glycaemic control in patients with type 2 diabetes. The data suggest the existence of a triglyceride lipotoxic pathway that interferes with gastric/neural mediated pathways that can regulate glycaemic control.
doi:10.1111/dme.12132
PMCID: PMC3709131  PMID: 23323566

Results 1-6 (6)