PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
author:("Yang, chungju")
1.  Correction: A Dominant EV71-Specific CD4+ T Cell Epitope Is Highly Conserved among Human Enteroviruses 
PLoS ONE  2014;9(1):10.1371/annotation/434cdaa5-9654-4052-b325-fef0f31d4657.
doi:10.1371/annotation/434cdaa5-9654-4052-b325-fef0f31d4657
PMCID: PMC3891554
2.  A Single Early Introduction of HIV-1 Subtype B into Central America Accounts for Most Current Cases 
Journal of Virology  2013;87(13):7463-7470.
Human immunodeficiency virus type 1 (HIV-1) variants show considerable geographical separation across the world, but there is limited information from Central America. We provide the first detailed investigation of the genetic diversity and molecular epidemiology of HIV-1 in six Central American countries. Phylogenetic analysis was performed on 625 HIV-1 pol gene sequences collected between 2002 and 2010 in Honduras, El Salvador, Nicaragua, Costa Rica, Panama, and Belize. Published sequences from neighboring countries (n = 57) and the rest of the world (n = 740) were included as controls. Maximum likelihood methods were used to explore phylogenetic relationships. Bayesian coalescence-based methods were used to time HIV-1 introductions. Nearly all (98.9%) Central American sequences were of subtype B. Phylogenetic analysis revealed that 437 (70%) sequences clustered within five significantly supported monophyletic clades formed essentially by Central American sequences. One clade contained 386 (62%) sequences from all six countries; the other four clades were smaller and more country specific, suggesting discrete subepidemics. The existence of one large well-supported Central American clade provides evidence that a single introduction of HIV-1 subtype B in Central America accounts for most current cases. An introduction during the early phase of the HIV-1 pandemic may explain its epidemiological success. Moreover, the smaller clades suggest a subsequent regional spread related to specific transmission networks within each country.
doi:10.1128/JVI.01602-12
PMCID: PMC3700274  PMID: 23616665
3.  Molecular Characterization of Ambiguous Mutations in HIV-1 Polymerase Gene: Implications for Monitoring HIV Infection Status and Drug Resistance 
PLoS ONE  2013;8(10):e77649.
Detection of recent HIV infections is a prerequisite for reliable estimations of transmitted HIV drug resistance (t-HIVDR) and incidence. However, accurately identifying recent HIV infection is challenging due partially to the limitations of current serological tests. Ambiguous nucleotides are newly emerged mutations in quasispecies, and accumulate by time of viral infection. We utilized ambiguous mutations to establish a measurement for detecting recent HIV infection and monitoring early HIVDR development. Ambiguous nucleotides were extracted from HIV-1 pol-gene sequences in the datasets of recent (HIVDR threshold surveys [HIVDR-TS] in 7 countries; n=416) and established infections (1 HIVDR monitoring survey at baseline; n=271). An ambiguous mutation index of 2.04×10-3 nts/site was detected in HIV-1 recent infections which is equivalent to the HIV-1 substitution rate (2×10-3 nts/site/year) reported before. However, significantly higher index (14.41×10-3 nts/site) was revealed with established infections. Using this substitution rate, 75.2% subjects in HIVDR-TS with the exception of the Vietnam dataset and 3.3% those in HIVDR-baseline were classified as recent infection within one year. We also calculated mutation scores at amino acid level at HIVDR sites based on ambiguous or fitted mutations. The overall mutation scores caused by ambiguous mutations increased (0.54×10-23.48×10-2/DR-site) whereas those caused by fitted mutations remained stable (7.50-7.89×10-2/DR-site) in both recent and established infections, indicating that t-HIVDR exists in drug-naïve populations regardless of infection status in which new HIVDR continues to emerge. Our findings suggest that characterization of ambiguous mutations in HIV may serve as an additional tool to differentiate recent from established infections and to monitor HIVDR emergence.
doi:10.1371/journal.pone.0077649
PMCID: PMC3798419  PMID: 24147046
4.  Field Evaluation of a Broadly Sensitive HIV-1 In-House Genotyping Assay for Use with both Plasma and Dried Blood Spot Specimens in a Resource-Limited Country 
Journal of Clinical Microbiology  2013;51(2):529-539.
HIV-1 drug resistance (HIVDR) assays are important tools in clinical management of HIV-infected patients on antiretroviral therapy (ART) and surveillance of drug-resistant variants at population levels. The high cost associated with commercial assays hinders their use in resource-limited settings. We adopted and validated a low-cost in-house assay using 68 matched plasma and dried blood spot (DBS) samples with a median viral load (VL) of 58,187 copies/ml, ranging from 253 to 3,264,850 against the commercial assay ViroSeq. Results indicated that the in-house assay not only had a higher plasma genotyping rate than did ViroSeq (94% versus 78%) but also was able to genotype 89.5% (51/57) of the matched DBS samples with VLs of ≥1,000 copies/ml. The sensitivity in detecting DR mutations by the in-house assay was 98.29% (95% confidence interval [CI], 97.86 to 98.72) on plasma and 96.54 (95% CI, 95.93 to 97.15) on DBS, and the specificity was 99.97% (95% CI, 99.91 to 100.00) for both sample types compared to ViroSeq. The minor DR mutation differences detected by the in-house assay against ViroSeq did not result in clinical significance. In addition, cost analysis showed that the in-house assay could reduce the genotyping cost by about 60% for both plasma and DBS compared to ViroSeq. This field condition evaluation highlights the potential utility of a cost-effective, subtype-independent, in-house genotyping assay using both plasma and DBS specimens for HIVDR clinical monitoring and population-based surveillance in resource-limited settings.
doi:10.1128/JCM.02347-12
PMCID: PMC3553877  PMID: 23224100
5.  Comparison of Ahlstrom Grade 226, Munktell TFN, and Whatman 903 Filter Papers for Dried Blood Spot Specimen Collection and Subsequent HIV-1 Load and Drug Resistance Genotyping Analysis 
Dried blood spots (DBS) collected onto filter paper have eased the difficulty of blood collection in resource-limited settings. Currently, Whatman 903 (W-903) filter paper is the only filter paper that has been used for HIV load and HIV drug resistance (HIVDR) testing. We therefore evaluated two additional commercially available filter papers, Ahlstrom grade 226 (A-226) and Munktell TFN (M-TFN), for viral load (VL) testing and HIVDR genotyping using W-903 filter paper as a comparison group. DBS specimens were generated from 344 adult patients on antiretroviral therapy (ART) in Botswana. The VL was measured with NucliSENS EasyQ HIV-1 v2.0, and genotyping was performed for those specimens with a detectable VL (≥2.90 log10 copies/ml) using an in-house method. Bland-Altman analysis revealed a strong concordance in quantitative VL analysis between W-903 and A-226 (bias = −0.034 ± 0.246 log10 copies/ml [mean difference ± standard deviation]) and W-903 and M-TFN (bias = −0.028 ± 0.186 log10 copies/ml) filter papers, while qualitative VL analysis for virological failure determination, defined as a VL of ≥3.00 log10 copies/ml, showed low sensitivities for A-266 (71.54%) and M-TFN (65.71%) filter papers compared to W-903 filter paper. DBS collected on M-TFN filter paper had the highest genotyping efficiency (100%) compared to W-903 and A-226 filter papers (91.7%) and appeared more sensitive in detecting major HIVDR mutations. DBS collected on A-226 and M-TFN filter papers performed similarly to DBS collected on W-903 filter paper for quantitative VL analysis and HIVDR detection. Together, the encouraging genotyping results and the variability observed in determining virological failure from this small pilot study warrant further investigation of A-226 and M-TFN filter papers as specimen collection devices for HIVDR monitoring surveys.
doi:10.1128/JCM.02002-12
PMCID: PMC3536251  PMID: 23077127
6.  Prevalence of HIV Drug Resistance Before and 1 Year After Treatment Initiation in 4 Sites in the Malawi Antiretroviral Treatment Program 
Since 2004, the Malawi antiretroviral treatment (ART) program has provided a public health–focused system based on World Health Organization clinical staging, standardized first-line ART regimens, limited laboratory monitoring, and no patient-level monitoring of human immunodeficiency virus drug resistance (HIVDR). The Malawi Ministry of Health conducts periodic evaluations of HIVDR development in prospective cohorts at sentinel clinics. We evaluated viral load suppression, HIVDR, and factors associated with HIVDR in 4 ART sites at 12–15 months after ART initiation. More than 70% of patients initiating ART had viral suppression at 12 months. HIVDR prevalence (6.1%) after 12 months of ART was low and largely associated with baseline HIVDR. Better follow-up, removal of barriers to on-time drug pickups, and adherence education for patients 16–24 years of age may further prevent HIVDR.
doi:10.1093/cid/cir987
PMCID: PMC3338306  PMID: 22544204
7.  Surveillance of Transmitted HIV Drug Resistance Using Matched Plasma and Dried Blood Spot Specimens From Voluntary Counseling and Testing Sites in Ho Chi Minh City, Vietnam, 2007–2008 
During 2007–2008, surveillance of transmitted human immunodeficiency virus (HIV) drug resistance (TDR) was performed following World Health Organization guidance among clients with newly diagnosed HIV infection attending voluntary counseling and testing (VCT) sites in Ho Chi Minh City (HCMC), Vietnam. Moderate (5%–15%) TDR to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) was observed among VCT clients aged 18–21 years. Follow-up surveillance of TDR in HCMC and other geographic regions of Vietnam is warranted. Data generated will guide the national HIV drug resistance surveillance strategy and support selection of current and future first-line antiretroviral therapy and HIV prevention programs.
doi:10.1093/cid/cir1049
PMCID: PMC3572868  PMID: 22544201
8.  A Dominant EV71-Specific CD4+ T Cell Epitope Is Highly Conserved among Human Enteroviruses 
PLoS ONE  2012;7(12):e51957.
CD4+ T cell-mediated immunity plays a central role in determining the immunopathogenesis of viral infections. However, the role of CD4+ T cells in EV71 infection, which causes hand, foot and mouth disease (HFMD), has yet to be elucidated. We applied a sophisticated method to identify promiscuous CD4+ T cell epitopes contained within the sequence of the EV71 polyprotein. Fifteen epitopes were identified, and three of them are dominant ones. The most dominant epitope is highly conserved among enterovirus species, including HFMD-related coxsackieviruses, HFMD-unrelated echoviruses and polioviruses. Furthermore, the CD4+ T cells specific to the epitope indeed cross-reacted with the homolog of poliovirus 3 Sabin. Our findings imply that CD4+ T cell responses to poliovirus following vaccination, or to other enteroviruses to which individuals may be exposed in early childhood, may have a modulating effect on subsequent CD4+ T cell response to EV71 infection or vaccine.
doi:10.1371/journal.pone.0051957
PMCID: PMC3522610  PMID: 23251663
10.  Comparison of HIV-1 resistance profiles in plasma RNA versus PBMC DNA in heavily treated patients in Honduras, a resource-limited country 
The World Health Organization currently does not recommend the use of dried blood spot specimens for drug resistance testing in patients undergoing antiretroviral therapy (ART). Therefore, HIV-1 resistance testing using peripheral blood mononuclear cells (PBMCs) may be of value in resource-limited settings. We compared genotypic resistance profiles in plasma and PBMCs from patients failing ART in two cities of Honduras (Tegucigalpa and San Pedro Sula), a resource-limited country. One hundred patients failing ART were randomly selected from a longitudinal patient monitoring cohort. Plasma and PBMC samples without patient identifier were used for genotypic resistance testing. Sequence data were analyzed, resistance profiles were determined and compared using Stanford HIV Drug Resistance Database algorithm. Specimens with concordant resistance profiles between the two compartments were 88% (95% CI: 80.3% - 94.5 %). Nine specimens (12%, 95% CI: 6.5% - 21.3%) had discordant resistance profiles of clinical significance. Logistic regression analyses indicated that patients on triple therapy were 17.24 times more likely to have concordant drug resistance profile than those on non-triple therapies (OR=17.24, 95% CI: 3.48, 83.33), while patients with increasing number of regimens and years on ART have a decreased rate of concordance (OR = 0.59, 95% CI: 0.32, 1.09 and OR = 0.62, 95% CI: 0.43, 0.88), respectively, than those with less number of regimens and years on ART. Our results show high level of concordance between plasma and PBMC resistance profiles, indicating the possibility of using PBMCs for drug resistance testing in resources-limited settings.
PMCID: PMC3316452  PMID: 22493752
HIV-1 drug resistance; RNA; PBMCs; concordance; discordance; resistance profile; resource-limited setting
11.  Optimization of a Low Cost and Broadly Sensitive Genotyping Assay for HIV-1 Drug Resistance Surveillance and Monitoring in Resource-Limited Settings 
PLoS ONE  2011;6(11):e28184.
Commercially available HIV-1 drug resistance (HIVDR) genotyping assays are expensive and have limitations in detecting non-B subtypes and circulating recombinant forms that are co-circulating in resource-limited settings (RLS). This study aimed to optimize a low cost and broadly sensitive in-house assay in detecting HIVDR mutations in the protease (PR) and reverse transcriptase (RT) regions of pol gene. The overall plasma genotyping sensitivity was 95.8% (N = 96). Compared to the original in-house assay and two commercially available genotyping systems, TRUGENE® and ViroSeq®, the optimized in-house assay showed a nucleotide sequence concordance of 99.3%, 99.6% and 99.1%, respectively. The optimized in-house assay was more sensitive in detecting mixture bases than the original in-house (N = 87, P<0.001) and TRUGENE® and ViroSeq® assays. When the optimized in-house assay was applied to genotype samples collected for HIVDR surveys (N = 230), all 72 (100%) plasma and 69 (95.8%) of the matched dried blood spots (DBS) in the Vietnam transmitted HIVDR survey were genotyped and nucleotide sequence concordance was 98.8%; Testing of treatment-experienced patient plasmas with viral load (VL) ≥ and <3 log10 copies/ml from the Nigeria and Malawi surveys yielded 100% (N = 46) and 78.6% (N = 14) genotyping rates, respectively. Furthermore, all 18 matched DBS stored at room temperature from the Nigeria survey were genotyped. Phylogenetic analysis of the 236 sequences revealed that 43.6% were CRF01_AE, 25.9% subtype C, 13.1% CRF02_AG, 5.1% subtype G, 4.2% subtype B, 2.5% subtype A, 2.1% each subtype F and unclassifiable, 0.4% each CRF06_CPX, CRF07_BC and CRF09_CPX.
Conclusions
The optimized in-house assay is broadly sensitive in genotyping HIV-1 group M viral strains and more sensitive than the original in-house, TRUGENE® and ViroSeq® in detecting mixed viral populations. The broad sensitivity and substantial reagent cost saving make this assay more accessible for RLS where HIVDR surveillance is recommended to minimize the development and transmission of HIVDR.
doi:10.1371/journal.pone.0028184
PMCID: PMC3223235  PMID: 22132237
12.  Neutralizing antibody response in the patients with hand, foot and mouth disease to enterovirus 71 and its clinical implications 
Virology Journal  2011;8:306.
Enterovirus 71 (EV71) has emerged as a significant pathogen causing large outbreaks in China for the past 3 years. Developing an EV71 vaccine is urgently needed to stop the spread of the disease; however, the adaptive immune response of humans to EV71 infection remains unclear. We examined the neutralizing antibody titers in HFMD patients and compared them to those of asymptomatic healthy children and young adults. We found that 80% of HFMD patients became positive for neutralizing antibodies against EV71 (GMT = 24.3) one day after the onset of illness. The antibody titers in the patients peaked two days (GMT = 79.5) after the illness appeared and were comparable to the level of adults (GMT = 45.2). Noticeably, the antibody response was not correlated with disease severity, suggesting that cellular immune response, besides neutralizing antibodies, could play critical role in controlling the outcome of EV71 infection in humans.
doi:10.1186/1743-422X-8-306
PMCID: PMC3142239  PMID: 21679417
EV71; neutralizing antibody; hand, foot and mouth disease; cellular immune response; vaccine
13.  Development and Application of a Broadly Sensitive Dried-Blood-Spot-Based Genotyping Assay for Global Surveillance of HIV-1 Drug Resistance ▿  
Journal of Clinical Microbiology  2010;48(9):3158-3164.
As antiretroviral therapy (ART) is scaled up in resource-limited countries, surveillance for HIV drug resistance (DR) is vital to ensure sustained effectiveness of first-line ART. We have developed and applied a broadly sensitive dried-blood-spot (DBS)-based genotyping assay for surveillance of HIV-1 DR in international settings. In 2005 and 2006, 171 DBS samples were collected under field conditions from newly diagnosed HIV-1-infected individuals from Malawi (n = 58), Tanzania (n = 60), and China (n =53). In addition, 30 DBS and 40 plasma specimens collected from ART patients in China and Cameroon, respectively, were also tested. Of the 171 DBS analyzed at the protease and RT regions, 149 (87.1%) could be genotyped, including 49 (81.7%) from Tanzania, 47 (88.7%) from China, and 53 (91.4%) from Malawi. Among the 70 ART patient samples analyzed, 100% (30/30) of the Chinese DBS and 90% (36/40) of the Cameroonian plasma specimens were genotyped, including 8 samples with a viral load of <400 copies/ml. The results of phylogenetic analyses indicated that the subtype, circulating recombinant form (CRF), and unique recombinant form (URF) distribution was as follows: 73 strains were subtype C (34%), 37 were subtype B (17.2%), 24 each were CRF01_AE or CRF02_AG (11.2% each), 22 were subtype A1 (10.2%), and 9 were unclassifiable (UC) (4.2%). The remaining samples were minor strains comprised of 6 that were CRF07_BC (2.8%), 5 that were CRF10_CD (2.3%), 3 each that were URF_A1C and CRF08_BC (1.4%), 2 each that were G, URF_BC, and URF_D/UC (0.9%), and 1 each that were subtype F1, subtype F2, and URF_A1D (0.5%). Our results indicate that this broadly sensitive genotyping assay can be used to genotype DBS collected from areas with diverse HIV-1 group M subtypes and CRFs. Thus, the assay is likely to become a useful screening tool in the global resistance surveillance and monitoring of HIV-1 where multiple subtypes and CRFs are found.
doi:10.1128/JCM.00564-10
PMCID: PMC2937690  PMID: 20660209
14.  Subclinical Plasmodium falciparum Infection and HIV-1 Viral Load 
Emerging Infectious Diseases  2007;13(2):351-353.
doi:10.3201/eid1302.060573
PMCID: PMC2725849  PMID: 17479917
HIV; malaria; coinfection; viral load; progression; children; letter
15.  Maternal Malaria and Perinatal HIV Transmission, Western Kenya1,2 
Emerging Infectious Diseases  2004;10(4):643-652.
To determine whether maternal placental malaria is associated with an increased risk for perinatal mother-to-child HIV transmission (MTCT), we studied HIV-positive women in western Kenya. We enrolled 512 mother-infant pairs; 128 (25.0%) women had malaria, and 102 (19.9%) infants acquired HIV perinatally. Log10 HIV viral load and episiotomy or perineal tear were associated with increased perinatal HIV transmission, whereas low-density malaria (<10,000 parasites/μL) was associated with reduced risk (adjusted relative risk [ARR] 0.4). Among women dually infected with malaria and HIV, high-density malaria (>10,000 parasites/μL) was associated with increased risk for perinatal MTCT (ARR 2.0), compared to low-density malaria. The interaction between placental malaria and MTCT appears to be variable and complex: placental malaria that is controlled at low density may cause an increase in broad-based immune responses that protect against MTCT; uncontrolled, high-density malaria may simultaneously disrupt placental architecture and generate substantial antigen stimulus to HIV replication and increase risk for MTCT.
doi:10.3201/eid1004.030303
PMCID: PMC3323077  PMID: 15200854
malaria; HIV; pregnancy; vertical disease transmission; placenta; risk factors; Kenya; Africa
16.  Detection of Simian Immunodeficiency Virus in Diverse Species and of Human Immunodeficiency Virus Type 2 by Using Consensus Primers within the pol Region 
Journal of Clinical Microbiology  2002;40(9):3167-3171.
Human immunodeficiency virus type 2 (HIV-2) is the result of cross-species transmission of simian immunodeficiency virus (SIV) from sooty mangabey monkeys to humans. Primer pairs (intHIV-2/SIV) based on a region of integrase that has considerable homology across HIV-2 and SIV lineages were designed to develop a broadly cross-reactive molecular assay to detect lentivirus infection in primates. The intHIV-2/SIV primers detect HIV-2 and simian viruses SIVcpz, SIVsmm, SIVsyk, SIVagm, and SIVmnd. The primers are also capable of amplifying some HIV-1 strains. Additionally, sequences from the integrase amplicons were of sufficient genetic diversity to permit not only phylogenetic clustering of all simian viruses to their respective lineages but also HIV type and group classification. Thus, the primers described here provide a method to detect primate lentiviruses from diverse species of nonhuman primates, as well as from persons infected with HIV-1 and HIV-2.
doi:10.1128/JCM.40.9.3167-3171.2002
PMCID: PMC130737  PMID: 12202548
17.  Serological Detection of Infection with Diverse Human and Simian Immunodeficiency Viruses Using Consensus env Peptides 
Cross-species transmission has been shown to play an important role in the emergence of human retroviruses. We developed a generic enzyme immunoassay using synthetic peptides from gp41 and C2V3 consensus sequences (human immunodeficiency virus [HIV] type 1 [HIV-1] groups M, O, and N and the homologous region of simian immunodeficiency virus [SIV] strains from chimpanzees [SIVcpz], SIVcpzGAB1 and SIVcpzANT) to detect divergent HIV and SIV. A cocktail of peptides from gp41 and C2V3 (M-O) detected all HIV-1 group M and O sera and showed cross-reactivity with SIVcpz sera. Further, a mixture of C2V3 peptides (GAB1-ANT) failed to detect HIV-1 infections but reacted with all SIVcpz sera, allowing discrimination of SIVcpz from HIV-1 infections. Since most SIVcpz sera cross-reacted with HIV-1 peptides, we next evaluated SIVcpz serum reactivity with rapid tests for HIV-1/2. SIVcpzANT and SIVcpzUS sera reacted with the Sero-strip and Multispot assays. Both tests are sensitive in detecting group M (97 100%, respectively), although Multispot has lower sensitivity for group O detection (67%) than does Sero-strip (100%). The limited volume and time required to perform these assays make them a generic tool for field screening. The env peptide-based assay and rapid tests should allow for the identification of emerging variants of HIV and SIV.
PMCID: PMC95940  PMID: 10882678
18.  Analysis of Genetic Variability within the Immunodominant Epitopes of Envelope gp41 from Human Immunodeficiency Virus Type 1 (HIV-1) Group M and Its Impact on HIV-1 Antibody Detection 
Journal of Clinical Microbiology  2000;38(2):773-780.
The serodiagnosis of human immunodeficiency virus type 1 (HIV-1) infection primarily relies on the detection of antibodies, most of which are directed against the immunodominant regions (IDR) of HIV-1 structural proteins. Among these, the N-terminal region of gp41 contains cluster I (amino acids [aa] 580 to 623), comprising the cytotoxic T-lymphocyte epitope (AVERYLKDQQLL) and the cysteine loop (CSGKLIC), and cluster II (aa 646 to 682), comprising an ectodomain region (ELDKWA). To delineate the epitope diversity within clusters I and II and to determine whether the diversity affects serologic detection by U.S. Food and Drug Administration (FDA)-licensed enzyme immunoassay (EIA) kits, gp41 Env sequences from 247 seropositive persons infected with HIV-1 group M, subtypes A (n = 42), B (n = 62), B′ (n = 13), C (n = 38), D (n = 41), E (n = 18), F (n = 27), and G (n = 6), and 6 HIV-1-infected but persistently seronegative (HIPS) persons were analyzed. While all IDR were highly conserved among both seropositive and HIPS persons, minor amino acid substitutions (<20% for any one residue, mostly conservative) were observed for all subtypes, except for B′, in comparison with the consensus sequence for each subtype. Most importantly, none of the observed substitutions among the group M plasma specimens affected antibody detection, since all specimens (n = 152) tested positive with all five FDA-licensed EIA kits. Furthermore, all specimens reacted with a group M consensus gp41 peptide (WGIKQLQARVLAVERYLKDQQLLGIWGCSGKLICTTAVPWNASW), and high degrees of cross-reactivity (>80%) were observed with an HIV-1 group N peptide, an HIV-1 group O peptide, and a peptide derived from the homologous region of gp41 from simian immunodeficiency virus from chimpanzee (SIVcpz). Taken together, these data indicate that the minor substitutions observed within the IDR of gp41 of HIV-1 group M subtypes do not affect antibody recognition and that all HIV-1-seropositive specimens containing the observed substitutions react with the FDA-licensed EIA kits regardless of viral genotype and geographic origin.
PMCID: PMC86201  PMID: 10655384
19.  Detection of Phylogenetically Diverse Human Immunodeficiency Virus Type 1 Groups M and O from Plasma by Using Highly Sensitive and Specific Generic Primers 
Journal of Clinical Microbiology  1999;37(8):2581-2586.
The high degree of genetic diversity within human immunodeficiency virus type 1 (HIV-1), which includes two major groups, M (major) and O (outlier), and various env subtypes within group M (subtypes A to J), has made designing assays that will detect all known HIV-1 strains difficult. We have developed a generic primer set based on the conserved immunodominant region of transmembrane protein gp41 that can reliably amplify as few as 10 copies/PCR of viral DNA from near-full-length clones representing group M subtypes A to H (subtypes I and J were not available). The assay is highly sensitive in detecting plasma viral RNA from HIV-1 strains of diverse geographic origins representing different subtypes of HIV-1 group M as well as HIV-1 group O. Of the 253 group M plasma specimens (subtypes A, 68 specimens; B, 71; C, 19; D, 27; E, 23; F, 33; and G, 12), 250 (98.8%) were amplified by using the gp41 M/O primer set. More importantly, all 32 (100%) group O plasma samples were also amplified with these primers. In vitro spiking experiments further revealed that the assay could reliably detect as few as 25 copies/ml of viral RNA and gave positive signals in HIV-1-seropositive specimens with plasma copy numbers below the limits of detection by all commercially available viral load assays. In addition, analysis of five seroconversion panels indicated that the assay is highly sensitive for early detection of plasma viremia during the “window period.” Thus, the highly sensitive assay will be useful for early detection of HIV-1 in clinical specimens from all known HIV-1 infections, regardless of their genotypes and geographic origins.
PMCID: PMC85288  PMID: 10405405
20.  Phylogenetic Analysis of Cryptosporidium Parasites Based on the Small-Subunit rRNA Gene Locus 
Biological data support the hypothesis that there are multiple species in the genus Cryptosporidium, but a recent analysis of the available genetic data suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxonomy of this parasite genus, we characterized the small-subunit rRNA genes of Cryptosporidium parvum, Cryptosporidium baileyi, Cryptosporidium muris, and Cryptosporidium serpentis and performed a phylogenetic analysis of the genus Cryptosporidium. Our study revealed that the genus Cryptosporidium contains the phylogenetically distinct species C. parvum, C. muris, C. baileyi, and C. serpentis, which is consistent with the biological characteristics and host specificity data. The Cryptosporidium species formed two clades, with C. parvum and C. baileyi belonging to one clade and C. muris and C. serpentis belonging to the other clade. Within C. parvum, human genotype isolates and guinea pig isolates (known as Cryptosporidium wrairi) each differed from bovine genotype isolates by the nucleotide sequence in four regions. A C. muris isolate from cattle was also different from parasites isolated from a rock hyrax and a Bactrian camel. Minor differences were also detected between C. serpentis isolates from snakes and lizards. Based on the genetic information, a species- and strain-specific PCR-restriction fragment length polymorphism diagnostic tool was developed.
PMCID: PMC91223  PMID: 10103253
21.  Partial Protection against Plasmodium vivax Blood-Stage Infection in Saimiri Monkeys by Immunization with a Recombinant C-Terminal Fragment of Merozoite Surface Protein 1 in Block Copolymer Adjuvant 
Infection and Immunity  1999;67(1):342-349.
Merozoite surface protein 1 is a candidate for blood-stage vaccines against malaria parasites. We report here an immunization study of Saimiri monkeys with a yeast-expressed recombinant protein containing the C terminus of Plasmodium vivax merozoite surface protein 1 and two T-helper epitopes of tetanus toxin (yP2P30Pv20019), formulated in aluminum hydroxide (alum) and block copolymer P1005. Monkeys immunized three times with yP2P30Pv20019 in block copolymer P1005 had significantly higher prechallenge titers of immunoglobulin G (IgG) antibodies against the immunogen and asexual blood-stage parasites than those immunized with yP2P30Pv20019 in alum, antigen alone, or phosphate-buffered saline (PBS) (P < 0.05). Their peripheral blood mononuclear cell proliferative responses to immunogen stimulation 4 weeks after the second immunization were also significantly higher than those from the PBS control group (P < 0.05). Upon challenge with 100,000 asexual blood-stage parasites 5 weeks after the last immunization, monkeys immunized with yP2P30Pv20019 in block copolymer P1005 had prepatent periods longer than those for the control alone group (P > 0.05). Three of the five animals in this group also had low parasitemia (peak parasitemia, ≤20 parasites/μl of blood). Partially protected monkeys had significantly higher levels of prechallenge antibodies against the immunogen than those unprotected (P < 0.05). There was also a positive correlation between the prepatent period and titers of IgG antibodies against the immunogen and asexual blood-stage parasites and a negative correlation between accumulated parasitemia and titers of IgG antibodies against the immunogen (P < 0.05). These results indicate that when combined with block copolymer and potent T-helper epitopes, the yeast-expressed P2P30Pv20019 recombinant protein may offer some protection against malaria.
PMCID: PMC96316  PMID: 9864235

Results 1-21 (21)