Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Downregulation of c-SRC kinase CSK promotes castration resistant prostate cancer and pinpoints a novel disease subclass 
Oncotarget  2015;6(26):22060-22071.
SRC kinase is activated in castration resistant prostate cancer (CRPC), phosphorylates the androgen receptor (AR), and causes its ligand-independent activation as a transcription factor. However, activating SRC mutations are exceedingly rare in human tumors, and mechanisms of ectopic SRC activation therefore remain largely unknown. Performing a functional genomics screen, we found that downregulation of SRC inhibitory kinase CSK is sufficient to overcome growth arrest induced by depriving human prostate cancer cells of androgen. CSK knockdown led to ectopic SRC activation, increased AR signaling, and resistance to anti-androgens. Consistent with the in vitro observations, stable knockdown of CSK conferred castration resistance in mouse xenograft models, while sensitivity to the tyrosine kinase inhibitor dasatinib was retained. Finally, CSK was found downregulated in a distinct subset of CRPCs marked by AR amplification and ETS2 deletion but lacking PTEN and RB1 mutations. These results identify CSK downregulation as a principal driver of SRC activation and castration resistance and validate SRC as a drug target in a molecularly defined subclass of CRPCs.
PMCID: PMC4673146  PMID: 26091350
castration-resistant prostate cancer; c-SRC kinase CSK; mouse xenografts; human prostate cancer tissue samples; siRNA screen
2.  Systems analysis of the prostate tumor suppressor NKX3.1 supports roles in DNA repair and luminal cell differentiation 
F1000Research  2014;3:115.
NKX3.1 is a homeobox transcription factor whose function as a prostate tumor suppressor remains insufficiently understood because neither the transcriptional program governed by NKX3.1, nor its interacting proteins have been fully revealed. Using affinity purification and mass spectrometry, we have established an extensive NKX3.1 interactome which contains the DNA repair proteins Ku70, Ku80, and PARP, thus providing a molecular underpinning to previous reports implicating NKX3.1 in DNA repair. Transcriptomic profiling of NKX3.1-negative prostate epithelial cells acutely expressing NKX3.1 revealed a rapid and complex response that is a near mirror image of the gene expression signature of human prostatic intraepithelial neoplasia (PIN). Pathway and network analyses suggested that NKX3.1 actuates a cellular reprogramming toward luminal cell differentiation characterized by suppression of pro-oncogenic c-MYC and interferon-STAT signaling and activation of tumor suppressor pathways. Consistently, ectopic expression of NKX3.1 conferred a growth arrest depending on TNFα and JNK signaling. We propose that the tumor suppressor function of NKX3.1 entails a transcriptional program that maintains the differentiation state of secretory luminal cells and that disruption of NKX3.1 contributes to prostate tumorigenesis by permitting luminal cell de-differentiation potentially augmented by defects in DNA repair.
PMCID: PMC4141641  PMID: 25177484
3.  Targeting ER Stress and Akt with OSU-03012 and Gefitinib or Erlotinib to Overcome Resistance to EGFR Inhibitors* 
Cancer research  2008;68(8):2820-2830.
Pre-existing and acquired resistance to epidermal growth factor receptor (EGFR) inhibitors limit their clinical usefulness in patients with advanced non-small cell lung cancer (NSCLC). This study characterizes the efficacy and mechanisms of the combination of gefitinib or erlotinib with OSU-03012, a celecoxib-derived antitumor agent, to overcome EGFR inhibitor-resistance in three NSCLC cell lines, H1155, H23, and A549. The OSU-03012/EGFR inhibitor combination induced pronounced apoptosis in H1155 and H23 cells, but not in A549 cells, suggesting a correlation between drug sensitivity and basal phospho-Akt levels independently of EGFR expression status. Evidence indicates that this combination facilitates apoptosis through both Akt signaling inhibition and upregulation of ER stress-induced, GADD153-mediated pathways. For example, ectopic expression of constitutively active Akt significantly attenuated the inhibitory effect on cell survival, and siRNA-mediated knockdown of GADD153 protected cells from undergoing apoptosis in response to drug co-treatments. Furthermore, the OSU-03012/EGFR inhibitor combination induced GADD153-mediated upregulation of death receptor 5 expression and subsequent activation of the extrinsic apoptosis pathway. It is noteworthy that the ER stress response induced by this combination was atypical in that the cytoprotective pathway was not engaged. In addition, in vivo suppression of tumor growth and modulation of intratumoral biomarkers were observed in a H1155 tumor xenograft model in nude mice. These data suggest that the concomitant modulation of Akt and ER stress pathways with the OSU-03012/EGFR inhibitor combination represents a unique approach to overcoming EGFR inhibitor resistance in NCSLC and perhaps other types of cancer with elevated basal Akt activities.
PMCID: PMC3904349  PMID: 18413750
Non-small cell lung cancer; ER stress; Akt; OSU-03012; EGFR inhibitors
4.  An MBS-Assisted Femtocell Transmit Power Control Scheme with Mobile User QoS Guarantee in 2-Tier Heterogeneous Femtocell Networks 
The Scientific World Journal  2013;2013:403978.
This study investigates how to adjust the transmit power of femto base station (FBS) to mitigate interference problems between the FBSs and mobile users (MUs) in the 2-tier heterogeneous femtocell networks. A common baseline of deploying the FBS to increase the indoor access bandwidth requires that the FBS operation will not affect outdoor MUs operation with their quality-of-service (QoS) requirements. To tackle this technical problem, an FBS transmit power adjustment (FTPA) algorithm is proposed to adjust the FBS transmit power (FTP) to avoid unwanted cochannel interference (CCI) with the neighboring MUs in downlink transmission. FTPA reduces the FTP to serve its femto users (FUs) according to the QoS requirements of the nearest neighboring MUs to the FBS so that the MU QoS requirement is guaranteed. Simulation results demonstrate that FTPA can achieve a low MU outage probability as well as serve FUs without violating the MU QoS requirements. Simulation results also reveal that FTPA has better performance on voice and video services which are the major trend of future multimedia communication in the NGN.
PMCID: PMC3874299  PMID: 24391461
5.  Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells 
BMC Biology  2010;8:153.
The cyclin-dependent kinase (CDK) inhibitor p27Kip1 is downregulated in a majority of human cancers due to ectopic proteolysis by the ubiquitin-proteasome pathway. The expression of p27 is subject to multiple mechanisms of control involving several transcription factors, kinase pathways and at least three different ubiquitin ligases (SCFSKP2, KPC, Pirh2), which regulate p27 transcription, translation, protein stability and subcellular localization. Using a chemical genetics approach, we have asked whether this control network can be modulated by small molecules such that p27 protein expression is restored in cancer cells.
We developed a cell-based assay for measuring the levels of endogenous nuclear p27 in a high throughput screening format employing LNCaP prostate cancer cells engineered to overexpress SKP2. The assay platform was optimized to Z' factors of 0.48 - 0.6 and piloted by screening a total of 7368 chemical compounds. During the course of this work, we discovered two small molecules of previously unknown biological activity, SMIP001 and SMIP004, which increase the nuclear level of p27 at low micromolar concentrations. SMIPs (small molecule inhibitors of p27 depletion) also upregulate p21Cip1, inhibit cellular CDK2 activity, induce G1 delay, inhibit colony formation in soft agar and exhibit preferential cytotoxicity in LNCaP cells relative to normal human fibroblasts. Unlike SMIP001, SMIP004 was found to downregulate SKP2 and to stabilize p27, although neither SMIP is a proteasome inhibitor. Whereas the screening endpoint - nuclear p27 - was robustly modulated by the compounds, SMIP-mediated cell cycle arrest and apoptosis were not strictly dependent on p27 and p21 - a finding that is explained by parallel inhibitory effects of SMIPs on positive cell cycle regulators, including cyclins E and A, and CDK4.
Our data provide proof-of-principle that the screening platform we developed, using endogenous nuclear p27 as an endpoint, presents an effective means of identifying bioactive molecules with cancer selective antiproliferative activity. This approach, when applied to larger and more diverse sets of compounds with refined drug-like properties, bears the potential of revealing both unknown cellular pathways globally impinging on p27 and novel leads for chemotherapeutics targeting a prominent molecular defect of human cancers.
PMCID: PMC3025922  PMID: 21182779

Results 1-5 (5)