Search tips
Search criteria

Results 1-25 (27)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Structure-Based Mutational Studies of Substrate Inhibition of Betaine Aldehyde Dehydrogenase BetB from Staphylococcus aureus 
Applied and Environmental Microbiology  2014;80(13):3992-4002.
Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD+ binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.
PMCID: PMC4054205  PMID: 24747910
2.  A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair 
Molecular microbiology  2010;79(2):484-502.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks, and 5′-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.
PMCID: PMC3071548  PMID: 21219465
Cas1; CRISPR; DNA recombination; DNA repair; nuclease; YgbT
3.  CRISPR RNA binding and DNA target recognition by purified Cascade complexes from Escherichia coli 
Nucleic Acids Research  2014;43(1):530-543.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated Cas proteins comprise a prokaryotic RNA-guided adaptive immune system that interferes with mobile genetic elements, such as plasmids and phages. The type I-E CRISPR interference complex Cascade from Escherichia coli is composed of five different Cas proteins and a 61-nt-long guide RNA (crRNA). crRNAs contain a unique 32-nt spacer flanked by a repeat-derived 5′ handle (8 nt) and a 3′ handle (21 nt). The spacer part of crRNA directs Cascade to DNA targets. Here, we show that the E. coli Cascade can be expressed and purified from cells lacking crRNAs and loaded in vitro with synthetic crRNAs, which direct it to targets complementary to crRNA spacer. The deletion of even one nucleotide from the crRNA 5′ handle disrupted its binding to Cascade and target DNA recognition. In contrast, crRNA variants with just a single nucleotide downstream of the spacer part bound Cascade and the resulting ribonucleotide complex containing a 41-nt-long crRNA specifically recognized DNA targets. Thus, the E. coli Cascade-crRNA system exhibits significant flexibility suggesting that this complex can be engineered for applications in genome editing and opening the way for incorporation of site-specific labels in crRNA.
PMCID: PMC4288178  PMID: 25488810
4.  Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S]-cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus 
Journal of the American Chemical Society  2013;135(46):17476-17487.
Cas4 proteins, a core protein family associated with the microbial system of adaptive immunity CRISPR, are predicted to function in the adaptation step of the CRISPR mechanism. Here we show that the Cas4 protein SSO0001 from the archaeon Sulfolobus solfataricus has metal-dependent endonuclease and 5' to 3' exonuclease activities against single-stranded DNA, as well as ATP-independent DNA unwinding activity toward double-stranded DNA. The crystal structure of SSO0001 revealed a decameric toroid formed by five dimers with each protomer containing one [4Fe-4S] cluster and one Mn2+ ion bound in the active site located inside the internal tunnel. The conserved RecB motif and four Cys residues are important for DNA binding and cleavage activities, whereas DNA unwinding depends on several residues located near the [4Fe-4S]-cluster. Our results suggest that Cas4 proteins might contribute to the addition of novel CRISPR spacers through the formation of 3'-DNA overhangs and to the degradation of foreign DNA.
PMCID: PMC3889865  PMID: 24171432
CRISPR interference; Cas4; exonuclease; RecB motif; [4Fe-4S] cluster
5.  The CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe-2S] cluster: crystal structure and nuclease activity 
Nucleic Acids Research  2014;42(17):11144-11155.
Cas4 nucleases constitute a core family of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) associated proteins, but little is known about their structure and activity. Here we report the crystal structure of the Cas4 protein Pcal_0546 from Pyrobaculum calidifontis, which revealed a monomeric protein with a RecB-like fold and one [2Fe-2S] cluster coordinated by four conserved Cys residues. Pcal_0546 exhibits metal-dependent 5′ to 3′ exonuclease activity against ssDNA substrates, whereas the Cas4 protein SSO1391 from Sulfolobus solfataricus can cleave ssDNA in both the 5′ to 3′ and 3′ to 5′ directions. The active site of Pcal_0546 contains a bound metal ion coordinated by the side chains of Asp123, Glu136, His146, and the main chain carbonyl of Ile137. Site-directed mutagenesis of Pcal_0546 and SSO1391 revealed that the residues of RecB motifs II, III and QhXXY are critical for nuclease activity, whereas mutations of the conserved Cys residues resulted in a loss of the iron-sulfur cluster, but had no effect on DNA cleavage. Our results revealed the biochemical diversity of Cas4 nucleases, which can have different oligomeric states, contain [4Fe-4S] or [2Fe-2S] clusters, and cleave single stranded DNA in different directions producing single-stranded DNA overhangs, which are potential intermediates for the synthesis of new CRISPR spacers.
PMCID: PMC4176176  PMID: 25200083
6.  Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica 
The Biochemical journal  2012;445(2):193-203.
The uncharacterized α/β-hydrolase protein OLEI01171 from the psychrophilic marine bacterium Oleispira antarctica belongs to the PF00756 family of putative esterases, which also includes human esterase D. In the present paper we show that purified recombinant OLEI01171 exhibits high esterase activity against the model esterase substrate α-naphthyl acetate at 5 – 30°C with maximal activity at 15–20°C. The esterase activity of OLEI01171 was stimulated 3–8-fold by the addition of chloride or several other anions (0.1–1.0 M). Compared with mesophilic PF00756 esterases, OLEI01171 exhibited a lower overall protein thermostability. Two crystal structures ofOLEI01171 were solved at 1.75 and 2.1 Å resolution and revealed a classical serine hydrolase catalytic triad and the presence of a chloride or bromide ion bound in the active site close to the catalytic Ser148.Both anions were found to co-ordinate a potential catalytic water molecule located in the vicinity of the catalytic triad His257. The results of the present study suggest that the bound anion perhaps contributes to the polarization of the catalytic water molecule and increases the rate of the hydrolysis of an acyl-enzyme intermediate. Alanine replacement mutagenesis of OLEI01171 identified ten amino acid residues important for esterase activity. The replacement of Asn225 by lysine had no significant effect on the activity or thermostability of OLEI01171, but resulted in a detectable increase of activity at 35–45°C. The present study has provided insight into the molecular mechanisms of activity of a cold-active and anion-activated carboxyl esterase.
PMCID: PMC4127636  PMID: 22519667
anion activation; carboxyl esterase; cold-active enzyme; crystal structure; Oleispira antarctica; protein thermostability
7.  Structure and activity of the Pseudomonas aeruginosa hotdog-fold thioesterases PA5202 and PA2801 
The Biochemical journal  2012;444(3):10.1042/BJ20112032.
The hotdog fold is one of the basic protein folds widely present in bacteria, archaea, and eukaryotes. Many of these proteins exhibit thioesterase activity against fatty acyl-CoAs and play important roles in lipid metabolism, cellular signaling, and degradation of xenobiotics. The genome of the opportunistic pathogen Pseudomonas aeruginosa contains over 20 genes encoding predicted hotdog-fold proteins, none of which have been experimentally characterized. We have found that two P. aeruginosa hotdog proteins display high thioesterase activity against 3-hydroxy-3-methylglutaryl-CoA and glutaryl-CoA (PA5202), and octanoyl-CoA (PA2801). Crystal structures of these proteins were solved (1.70 and 1.75 Å) and revealed a hotdog fold with a potential catalytic carboxylate residue located on the long alpha helix (Asp57 in PA5202 and Glu35 in PA2801). Alanine replacement mutagenesis of PA5202 identified four residues (Asn42, Arg43, Asp57, and Thr76), which are critical for activity and are located in the active site. A P. aeruginosa PA5202 deletion strain showed an increased secretion of the antimicrobial pigment pyocyanine and an increased expression of genes involved in pyocyanin biosynthesis suggesting a functional link between the PA5202 activity and pyocyanin production. Thus, the P. aeruginosa hotdog thioesterases PA5202 and PA2801 have similar structures, but exhibit different substrate preferences and functions.
PMCID: PMC3836677  PMID: 22439787
hotdog fold; thioesterase; crystal structure; pyocyanin; Pseudomonas aeruginosa
8.  Biochemical and Structural Studies of Conserved Maf Proteins Revealed Nucleotide Pyrophosphatases with a Preference for Modified Nucleotides 
Chemistry & Biology  2013;20(11):1386-1398.
Maf (for multicopy associated filamentation) proteins represent a large family of conserved proteins implicated in cell division arrest but whose biochemical activity remains unknown. Here, we show that the prokaryotic and eukaryotic Maf proteins exhibit nucleotide pyrophosphatase activity against 5-methyl-UTP, pseudo-UTP, 5-methyl-CTP, and 7-methyl-GTP, which represent the most abundant modified bases in all organisms, as well as against canonical nucleotides dTTP, UTP, and CTP. Overexpression of the Maf protein YhdE in E. coli cells increased intracellular levels of dTMP and UMP, confirming that dTTP and UTP are the in vivo substrates of this protein. Crystal structures and site-directed mutagenesis of Maf proteins revealed the determinants of their activity and substrate specificity. Thus, pyrophosphatase activity of Maf proteins toward canonical and modified nucleotides might provide the molecular mechanism for a dual role of these proteins in cell division arrest and house cleaning.
Graphical Abstract
•Maf proteins represent a family of nucleoside triphosphate pyrophosphatases•Maf proteins hydrolyze the canonical nucleotides dTTP, UTP, and CTP•Maf proteins are also active against m5UTP, m5CTP, pseudo-UTP, and m7GTP•Maf structures reveal the molecular mechanisms of their substrate selectivity
Tchigvintsev et al. show that Maf proteins are a family of nucleotide pyrophosphatases active against both canonical and modified nucleotides. This suggests that Mafs might have a dual role in cell division and in the prevention of the incorporation of modified nucleotides into cellular nucleic acids.
PMCID: PMC3899018  PMID: 24210219
9.  Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis 
Microbial Biotechnology  2013;6(5):588-597.
Multicopper oxidases can act on a broad spectrum of phenolic and non-phenolic compounds. These enzymes include laccases, which are widely distributed in plants and fungi, and were more recently identified in bacteria. Here, we present the results of biochemical and mutational studies of small laccase (SLAC), a multicopper oxidase from Streptomyces coelicolor (SCO6712). In addition to typical laccase substrates, SLAC was tested using phenolic compounds that exhibit antioxidant activity. SLAC showed oxidase activity against 12 of 23 substrates tested, including caffeic acid, ferulic acid, resveratrol, quercetin, morin, kaempferol and myricetin. The kinetic parameters of SLAC were determined for 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid), 2,6-dimethoxyphenol, quercetin, morin and myricetin, and maximum reaction rates were observed with myricetin, where kcat and Km values at 60°C were 8.1 (± 0.8) s−1 and 0.9 (± 0.3) mM respectively. SLAC had a broad pH optimum for activity (between pH 4 and 8) and temperature optimum at 60–70°C. It demonstrated remarkable thermostability with a half-life of over 10 h at 80°C and over 7 h at 90°C. Site-directed mutagenesis revealed 17 amino acid residues important for SLAC activity including the 10 His residues involved in copper coordination. Most notably, the Y229A and Y230A mutant proteins showed over 10-fold increase in activity compared with the wild-type SLAC, which was correlated to higher copper incorporation, while kinetic analyses with S929A predicts localization of this residue near the meta-position of aromatic substrates.
Funding Information Funding for this research was provided by the Government of Ontario for the project ‘FFABnet: Functionalized Fibre and Biochemicals’ (ORF-RE-05-005), and the Natural Sciences and Engineering Research Council of Canada.
PMCID: PMC3918160  PMID: 23815400
10.  Biochemical Diversity of Carboxyl Esterases and Lipases from Lake Arreo (Spain): a Metagenomic Approach 
Applied and Environmental Microbiology  2013;79(12):3553-3562.
The esterases and lipases from the α/β hydrolase superfamily exhibit an enormous sequence diversity, fold plasticity, and activities. Here, we present the comprehensive sequence and biochemical analyses of seven distinct esterases and lipases from the metagenome of Lake Arreo, an evaporite karstic lake in Spain (42°46′N, 2°59′W; altitude, 655 m). Together with oligonucleotide usage patterns and BLASTP analysis, our study of esterases/lipases mined from Lake Arreo suggests that its sediment contains moderately halophilic and cold-adapted proteobacteria containing DNA fragments of distantly related plasmids or chromosomal genomic islands of plasmid and phage origins. This metagenome encodes esterases/lipases with broad substrate profiles (tested over a set of 101 structurally diverse esters) and habitat-specific characteristics, as they exhibit maximal activity at alkaline pH (8.0 to 8.5) and temperature of 16 to 40°C, and they are stimulated (1.5 to 2.2 times) by chloride ions (0.1 to 1.2 M), reflecting an adaptation to environmental conditions. Our work provides further insights into the potential significance of the Lake Arreo esterases/lipases for biotechnology processes (i.e., production of enantiomers and sugar esters), because these enzymes are salt tolerant and are active at low temperatures and against a broad range of substrates. As an example, the ability of a single protein to hydrolyze triacylglycerols, (non)halogenated alkyl and aryl esters, cinnamoyl and carbohydrate esters, lactones, and chiral epoxides to a similar extent was demonstrated.
PMCID: PMC3675924  PMID: 23542620
11.  Nucleotide degradation and ribose salvage in yeast 
Metabolomics, genetics and biochemistry were combined to obtain the first complete map of the nucleotide degradation and ribose salvage pathway in yeast. This pathway promotes yeast survival in starvation and oxidative stress.
During carbon starvation, ribose salvage from nucleotides promotes yeast survival.The salvage pathway requires the previously misannotated nucleotidase Phm8.Ribose-derived carbon accumulates as sedoheptulose-7-phosphate.This carbon reserve enables rapid NADPH production in oxidative stress.
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
PMCID: PMC4039369  PMID: 23670538
autophagy; mass spectrometry; metabolism; nutrient starvation; Saccharomyces cerevisiae
12.  Evolution and classification of the CRISPR-Cas systems 
Nature Reviews. Microbiology  2011;9(6):467-477.
The CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR–Cas systems and Cas proteins. Three major types of CRISPR–Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR–Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a `polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR–cas loci.
PMCID: PMC3380444  PMID: 21552286
13.  Riboneogenesis in yeast 
Cell  2011;145(6):969-980.
Gluconeogenesis converts three carbon units into glucose. Here we identify an analogous pathway in Saccharomyces cerevisiae for converting three carbon units into ribose, a component of nucleic acids and nucleotides. This riboneogenic pathway involves the enzyme sedoheptulose-1,7-bisphosphatase (SHB17), whose activity was identified based on accumulation of sedoheptulose-1,7-bisphosphate in the corresponding knockout strain. We determined the crystal structure of Shb17 in complex with sedoheptulose-1,7-bisphosphate, and found that the sugar is bound in the closed furan form in the active site. Like fructose-1,6-bisphosphate, sedoheptulose-1,7-bisphosphate is produced by aldolase, in this case from erythrose 4-phosphate and dihydroxyacetone phosphate. Hydrolysis of sedoheptulose-1,7-bisphosphate by SHB17 provides an energetically favorable input to the non-oxidative pentose phosphate pathway to drive ribose production. Flux through SHB17 is enhanced under conditions when ribose demand is high relative to demand for NADPH, including during ribosome biogenesis in metabolically synchronized yeast cells. Thus, riboneogenesis provides a thermodynamically-driven route of ribose production uncoupled from formation of NADPH.
PMCID: PMC3163394  PMID: 21663798
14.  Mapping the Reaction Coordinates of Enzymatic Defluorination 
The carbon-fluorine bond is the strongest covalent bond in organic chemistry, yet fluoroacetate dehalogenases can readily hydrolyze this bond under mild physiological conditions. Elucidating the molecular basis of this rare biocatalytic activity will provide the fundamental chemical insights of how this formidable feat is achieved. Here, we present a series of high-resolution (1.15–1.80 Å) crystal structures of a fluoroacetate dehalogenase, capturing snapshots along the defluorination reaction: the free enzyme, enzyme-fluoroacetate Michaelis complex, glycolyl-enzyme covalent intermediate and enzyme-product complex. We demonstrate that enzymatic defluorination requires a halide pocket that not only supplies three hydrogen bonds to stabilize the fluoride ion, but is also finely tailored for the smaller fluorine halogen atom to establish selectivity towards fluorinated substrates. We have further uncovered dynamics near the active site which may play pivotal roles in enzymatic defluorination. These findings may ultimately lead to the development of novel defluorinases that will enable the biotransformation of more complex fluorinated organic compounds, which in turn will assist the synthesis, detoxification, biodegradation, disposal, recycling and regulatory strategies for the growing markets of organofluorines across major industrial sectors.
PMCID: PMC3101105  PMID: 21510690
15.  Structural insight into the mechanism of cyclic di-GMP hydrolysis by EAL domain phosphodiesterases 
Journal of molecular biology  2010;402(3):524-538.
Cyclic diguanylate (c-di-GMP) is a ubiquitous second messenger regulating diverse cellular functions including motility, biofilm formation, cell cycle progression and virulence in bacteria. In the cell, degradation of c-di-GMP is catalyzed by highly specific EAL domain phosphodiesterases whose catalytic mechanism is still unclear. Here, we purified 13 EAL domain proteins from various organisms and demonstrated that their catalytic activity is associated with the presence of 10 conserved EAL domain residues. The crystal structure of the TDB1265 EAL domain was determined in a free state (1.8 Å) and in complex with c-di-GMP (2.35 Å) and unveiled the role of the conserved residues in substrate binding and catalysis. The structure revealed the presence of two metal ions directly coordinated by six conserved residues, two oxygens of the c-di-GMP phosphate, and potential catalytic water molecule. Our results support a two-metal-ion catalytic mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases.
PMCID: PMC2945410  PMID: 20691189
EAL domain; cyclic di-GMP; phosphodiesterase; X-ray crystallography; Thiobacillus denitrificans
16.  The Chromosomal mazEF Locus of Streptococcus mutans Encodes a Functional Type II Toxin-Antitoxin Addiction System▿ †  
Journal of Bacteriology  2010;193(5):1122-1130.
Type II chromosomal toxin-antitoxin (TA) modules consist of a pair of genes that encode two components: a stable toxin and a labile antitoxin interfering with the lethal action of the toxin through protein complex formation. Bioinformatic analysis of Streptococcus mutans UA159 genome identified a pair of linked genes encoding a MazEF-like TA. Our results show that S. mutans mazEF genes form a bicistronic operon that is cotranscribed from a σ70-like promoter. Overproduction of S. mutans MazF toxin had a toxic effect on S. mutans which can be neutralized by coexpression of its cognate antitoxin, S. mutans MazE. Although mazF expression inhibited cell growth, no cell lysis of S. mutans cultures was observed under the conditions tested. The MazEF TA is also functional in E. coli, where S. mutans MazF did not kill the cells but rather caused reversible cell growth arrest. Recombinant S. mutans MazE and MazF proteins were purified and were shown to interact with each other in vivo, confirming the nature of this TA as a type II addiction system. Our data indicate that MazF is a toxic nuclease arresting cell growth through the mechanism of RNA cleavage and that MazE inhibits the RNase activity of MazF by forming a complex. Our results suggest that the MazEF TA module might represent a cell growth modulator facilitating the persistence of S. mutans under the harsh conditions of the oral cavity.
PMCID: PMC3067577  PMID: 21183668
17.  Mining bacterial genomes for novel arylesterase activity 
Microbial biotechnology  2010;3(6):677-690.
One hundred and seventy‐one genes encoding potential esterases from 11 bacterial genomes were cloned and overexpressed in Escherichia coli; 74 of the clones produced soluble proteins. All 74 soluble proteins were purified and screened for esterase activity; 36 proteins showed carboxyl esterase activity on short‐chain esters, 17 demonstrated arylesterase activity, while 38 proteins did not exhibit any activity towards the test substrates. Esterases from Rhodopseudomonas palustris (RpEST‐1, RpEST‐2 and RpEST‐3), Pseudomonas putida (PpEST‐1, PpEST‐2 and PpEST‐3), Pseudomonas aeruginosa (PaEST‐1) and Streptomyces avermitilis (SavEST‐1) were selected for detailed biochemical characterization. All of the enzymes showed optimal activity at neutral or alkaline pH, and the half‐life of each enzyme at 50°C ranged from < 5 min to over 5 h. PpEST‐3, RpEST‐1 and RpEST‐2 demonstrated the highest specific activity with pNP‐esters; these enzymes were also among the most stable at 50°C and in the presence of detergents, polar and non‐polar organic solvents, and imidazolium ionic liquids. Accordingly, these enzymes are particularly interesting targets for subsequent application trials. Finally, biochemical and bioinformatic analyses were compared to reveal sequence features that could be correlated to enzymes with arylesterase activity, facilitating subsequent searches for new esterases in microbial genome sequences.
PMCID: PMC3815341  PMID: 21255363
18.  Functional and structural characterization of DR_0079 from Deinococcus radiodurans, a novel Nudix hydrolase with a preference for cytosine (deoxy)ribonucleoside 5’-di- and triphosphates† 
Biochemistry  2008;47(25):6571-6582.
The genome of the extremely radiation resistant bacterium Deinococcus radiodurans encodes 21 Nudix hydrolases of which only two have been characterized in detail. Here we report the activity and crystal structure for DR_0079, the first Nudix hydrolase observed to have a marked preference for cytosine ribonucleoside 5’-diphosphate (CDP) and cytosine ribonucleoside 5’-triphosphate (CTP). After CDP and CTP the next most preferred substrates for DR_0079, with a relative activity of < 50%, were the corresponding deoxyribose nucleotides, dCDP and dCTP. Hydrolase activity at the site of the phosphodiester bond was corroborated using 31P NMR spectroscopy to follow the phosphorus resonances for three substrates, CDP, IDP, and CTP, and their respective hydrolysis products, CMP + Pi, IMP + Pi, and CMP + PPi. Nucleophilic substitution at the β-phosphorus of CDP and CTP was established, using 31P NMR spectroscopy, by the appearance of an upfield shifted Pi resonance and line-broadened PPi resonance, respectively, when performing the hydrolysis in 40% H218O enriched water. Optimum activity for CDP was at pH 9.0 – 9.5 with the reaction requiring divalent metal cation (Mg2+ > Mn2+ > Co2+). The biochemical data is discussed with reference to the crystal structure for DR_0079 that was determined in the metal-free form at 1.9 Å resolution. The protein contains nine β-strands, three α-helices, and two 310-helices organized into three subdomains; an N-terminal β-sheet, a central Nudix core, and a C-terminal helix-turn-helix motif. As observed for all known structures of Nudix hydrolases, the α-helix of the ‘Nudix box’ is one of two helices that sandwich a ‘four-strand’ mixed β-sheet. To identify residues potentially involved in metal and substrate binding, NMR chemical shift mapping experiments were performed on 15N-labelled DR_0079 with the paramagnetic divalent cation Co2+ and the non-hydrolyzable substrate thymidine-5’-O-(α,β-methylenediphosphate) and the results mapped onto the crystal structure.
PMCID: PMC2867059  PMID: 18512963
chemical shift mapping; phosphorus-31 NMR; function screening; Nudix hydrolase; cytidine 5`diphosphate
19.  Sequence‐ and activity‐based screening of microbial genomes for novel dehalogenases 
Microbial biotechnology  2009;3(1):107-120.
Dehalogenases are environmentally important enzymes that detoxify organohalogens by cleaving their carbon‐halogen bonds. Many microbial genomes harbour enzyme families containing dehalogenases, but a sequence‐based identification of genuine dehalogenases with high confidence is challenging because of the low sequence conservation among these enzymes. Furthermore, these protein families harbour a rich diversity of other enzymes including esterases and phosphatases. Reliable sequence determinants are necessary to harness genome sequencing‐efforts for accelerating the discovery of novel dehalogenases with improved or modified activities. In an attempt to extract dehalogenase sequence fingerprints, 103 uncharacterized potential dehalogenase candidates belonging to the α/β hydrolase (ABH) and haloacid dehalogenase‐like hydrolase (HAD) superfamilies were screened for dehalogenase, esterase and phosphatase activity. In this first biochemical screen, 1 haloalkane dehalogenase, 1 fluoroacetate dehalogenase and 5 l‐2‐haloacid dehalogenases were found (success rate 7%), as well as 19 esterases and 31 phosphatases. Using this functional data, we refined the sequence‐based dehalogenase selection criteria and applied them to a second functional screen, which identified novel dehalogenase activity in 13 out of only 24 proteins (54%), increasing the success rate eightfold. Four new l‐2‐haloacid dehalogenases from the HAD superfamily were found to hydrolyse fluoroacetate, an activity never previously ascribed to enzymes in this superfamily.
PMCID: PMC3815952  PMID: 21255311
20.  Structure- and Function-based Characterization of a New Phosphoglycolate Phosphatase from Thermoplasma acidophilum* 
The Journal of biological chemistry  2003;279(1):517-526.
The protein TA0175 has a large number of sequence homologues, most of which are annotated as unknown and a few as belonging to the haloacid dehalogenase superfamily, but has no known biological function. Using a combination of amino acid sequence analysis, three-dimensional crystal structure information, and kinetic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophilum. The crystal structure of TA0175 revealed two distinct domains, a larger core domain and a smaller cap domain. The large domain is composed of a centrally located five-stranded parallel β-sheet with strand order S10, S9, S8, S1, S2 and a small β-hairpin, strands S3 and S4. This central sheet is flanked by a set of three α-helices on one side and two helices on the other. The smaller domain is composed of an open faced β-sandwich represented by three antiparallel β-strands, S5, S6, and S7, flanked by two oppositely oriented α-helices, H3 and H4. The topology of the large domain is conserved; however, structural variation is observed in the smaller domain among the different functional classes of the haloacid dehalogenase superfamily. Enzymatic assays on TA0175 revealed that this enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic properties seen for eukaryotic phosphoglycolate phosphatase. Activation by divalent cations, especially Mg2+, and competitive inhibition behavior with Cl− ions are similar between TA0175 and phosphoglycolate phosphatase. The experimental evidence presented for TA0175 is indicative of phosphoglycolate phosphatase.
PMCID: PMC2795321  PMID: 14555659
21.  Integrating Structure, Bioinformatics, and Enzymology to Discover Function 
The Journal of biological chemistry  2003;278(28):26039-26045.
Structural proteomics projects are generating three-dimensional structures of novel, uncharacterized proteins at an increasing rate. However, structure alone is often insufficient to deduce the specific biochemical function of a protein. Here we determined the function for a protein using a strategy that integrates structural and bioinformatics data with parallel experimental screening for enzymatic activity. BioH is involved in biotin biosynthesis in Escherichia coli and had no previously known biochemical function. The crystal structure of BioH was determined at 1.7 Å resolution. An automated procedure was used to compare the structure of BioH with structural templates from a variety of different enzyme active sites. This screen identified a catalytic triad (Ser82, His235, and Asp207) with a configuration similar to that of the catalytic triad of hydrolases. Analysis of BioH with a panel of hydrolase assays revealed a carboxylesterase activity with a preference for short acyl chain substrates. The combined use of structural bioinformatics with experimental screens for detecting enzyme activity could greatly enhance the rate at which function is determined from structure.
PMCID: PMC2792009  PMID: 12732651
22.  Functional and Structural Characterization of Four Glutaminases from Escherichia coli and Bacillus subtilis† 
Biochemistry  2008;47(21):5724-5735.
Glutaminases belong to the large superfamily of serine-dependent β-lactamases and penicillin-binding proteins, and they catalyze the hydrolytic deamidation of l-glutamine to l-glutamate. In this work, we purified and biochemically characterized four predicted glutaminases from Escherichia coli (YbaS and YneH) and Bacillus subtilis (YlaM and YbgJ). The proteins demonstrated strict specificity to l-glutamine and did not hydrolyze d-glutamine or l-asparagine. In each organism, one glutaminase showed higher affinity to glutamine (E. coli YbaS and B. subtilis YlaM; Km 7.3 and 7.6 mM, respectively) than the second glutaminase (E. coli YneH and B. subtilis YbgJ; Km 27.6 and 30.6 mM, respectively). The crystal structures of the E. coli YbaS and the B. subtilis YbgJ revealed the presence of a classical β-lactamase-like fold and conservation of several key catalytic residues of β-lactamases (Ser74, Lys77, Asn126, Lys268, and Ser269 in YbgJ). Alanine replacement mutagenesis demonstrated that most of the conserved residues located in the putative glutaminase catalytic site are essential for activity. The crystal structure of the YbgJ complex with the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine revealed the presence of a covalent bond between the inhibitor and the hydroxyl oxygen of Ser74, providing evidence that Ser74 is the primary catalytic nucleophile and that the glutaminase reaction proceeds through formation of an enzyme–glutamyl intermediate. Growth experiments with the E. coli glutaminase deletion strains revealed that YneH is involved in the assimilation of l-glutamine as a sole source of carbon and nitrogen and suggested that both glutaminases (YbaS and YneH) also contribute to acid resistance in E. coli.
PMCID: PMC2735108  PMID: 18459799
23.  Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain 
Journal of molecular biology  2007;375(1):301-315.
We have identified a novel family of proteins, in which the N-terminal Cystathionine Beta-Synthase (CBS) domain is fused to the C-terminal Zn ribbon domain. Four proteins were over-expressed in E. coli and purified: TA0289 from Thermoplasma acidophilum, TV1335 from Thermoplasma vulcanum, PF1953 from Pyrococcus furiosus, and PH0267 from Pyrococcus horikoshii. The purified proteins had red/purple color in solution and an absorption spectrum typical of rubredoxins. Metal analysis of purified proteins revealed the presence of several metals with iron and zinc being the most abundant metals (2 to 67% of iron and 12 to 74% of zinc). Crystal structures of both mercury- and iron-bound TA0289 (1.5–2.0 Å resolution) revealed a dimeric protein whose inter-subunit contacts are formed exclusively by the α helices of two CBS sub-domains, whereas the C-terminal domain has a classical Zn-ribbon planar architecture. All proteins were reversibly reduced by chemical reductants (ascorbate or dithionite) or by the general rubredoxin reductase NorW from E. coli in the presence of NADH. Reduced TA0289 was found to be able to transfer electrons to cytochrome C from horse heart. Likewise, the purified Zn ribbon protein KTI11 from Saccharomyces cerevisiae had purple color in solution and a rubredoxin-like absorption spectrum, contained both iron and zinc, and was reduced by the rubredoxin reductase NorW from E. coli. Thus, recombinant Zn ribbon domains from archaea and yeast demonstrate a rubredoxin-like electron carrier activity in vitro. We suggest that in vivo some Zn ribbon domains might also bind iron and therefore possess an electron carrier activity adding another physiological role to this large family of important proteins.
PMCID: PMC2613313  PMID: 18021800
24.  AmtB Is Necessary for NH4+-Induced Nitrogenase Switch-Off and ADP-Ribosylation in Rhodobacter capsulatus‡ 
Journal of Bacteriology  2002;184(15):4081-4088.
Rhodobacter capsulatus possesses two genes potentially coding for ammonia transporters, amtB and amtY. In order to better understand their role in the physiology of this bacterium and their possible significance in nitrogen fixation, we created single-knockout mutants. Strains mutated in either amtB or amtY did not show a growth defect under any condition tested and were still capable of taking up ammonia at nearly wild-type rates, but an amtB mutant was no longer capable of transporting methylamine. The amtB strain but not the amtY strain was also totally defective in carrying out ADP-ribosylation of Fe-protein or the switch-off of in vivo nitrogenase activity in response to NH4+ addition. ADP-ribosylation in response to darkness was unaffected in amtB and amtBY strains, and glutamine synthetase activity was normally regulated in these strains in response to ammonium addition, suggesting that one role of AmtB is to function as an ammonia sensor for the processes that regulate nitrogenase activity.
PMCID: PMC135213  PMID: 12107124
25.  The Presence of ADP-Ribosylated Fe Protein of Nitrogenase in Rhodobacter capsulatus Is Correlated with Cellular Nitrogen Status 
Journal of Bacteriology  1999;181(7):1994-2000.
The photosynthetic bacterium Rhodobacter capsulatus has been shown to regulate its nitrogenase by covalent modification via the reversible ADP-ribosylation of Fe protein in response to darkness or the addition of external NH4+. Here we demonstrate the presence of ADP-ribosylated Fe protein under a variety of steady-state growth conditions. We examined the modification of Fe protein and nitrogenase activity under three different growth conditions that establish different levels of cellular nitrogen: batch growth with limiting NH4+, where the nitrogen status is externally controlled; batch growth on relatively poor nitrogen sources, where the nitrogen status is internally controlled by assimilatory processes; and continuous culture. When cultures were grown to stationary phase with different limiting concentrations of NH4+, the ADP-ribosylation state of Fe protein was found to correlate with cellular nitrogen status. Additionally, actively growing cultures (grown with N2 or glutamate), which had an intermediate cellular nitrogen status, contained a portion of their Fe protein in the modified state. The correlation between cellular nitrogen status and ADP-ribosylation state was corroborated with continuous cultures grown under various degrees of nitrogen limitation. These results show that in R. capsulatus the modification system that ADP-ribosylates nitrogenase in the short term in response to abrupt changes in the environment is also capable of modifying nitrogenase in accordance with long-term cellular conditions.
PMCID: PMC93609  PMID: 10094674

Results 1-25 (27)