Search tips
Search criteria

Results 1-25 (25)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The salutary effects of diphenyldifluoroketone EF24 in liver of a rat hemorrhagic shock model 
Liver is a target for injury in low flow states and it plays a central role in the progression of systemic failure associated with hemorrhagic shock. Pharmacologic support can help recover liver function even after it has suffered extensive damage during ischemia and reperfusion phases. In this work we assessed the efficacy of a diphenyldifluoroketone EF24, an IKKβ inhibitor, in controlling hepatic inflammatory signaling caused by hemorrhagic shock in a rat model.
Sprague Dawley rats were bled to about 50% of blood volume. The hemorrhaged rats were treated with vehicle control or EF24 (0.4 mg/kg) after 1 h of hemorrhage without any accompanying resuscitation. The study was terminated after additional 5 h to excise liver tissue for biochemical analyses and histology.
EF24 treatment alleviated hemorrhagic shock-induced histologic injury in the liver and restored serum transaminases to normal levels. Hemorrhagic shock induced the circulating levels of CD163 (a marker for macrophage activation) and CINC (an IL-8 analog), as well as myeloperoxidase activity in liver tissue. These markers of inflammatory injury were reduced by EF24 treatment. EF24 treatment also suppressed the expression of the Toll-like receptor 4, phospho-p65/Rel A, and cyclooxygenase-2 in liver tissues, indicating that it suppressed inflammatory pathway. Moreover, it reduced the hemorrhagic shock-induced increase in the expression of high mobility group box-1 protein. The evidence for apoptosis after hemorrhagic shock was inconclusive.
Even in the absence of volume support, EF24 treatment suppresses pro-inflammatory signaling in liver tissue and improves liver functional markers in hemorrhagic shock.
PMCID: PMC4324433  PMID: 25645333
EF24; Liver injury; Hemorrhagic shock; Resuscitation; Necrosis
2.  Suppression of Tumor Growth in Mice by Rationally Designed Pseudopeptide Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase1 
Neoplasia (New York, N.Y.)  2015;17(1):43-54.
Tumor microenvironments (TMEs) are composed of cancer cells, fibroblasts, extracellular matrix, microvessels, and endothelial cells. Two prolyl endopeptidases, fibroblast activation protein (FAP) and prolyl oligopeptidase (POP), are commonly overexpressed by epithelial-derived malignancies, with the specificity of FAP expression by cancer stromal fibroblasts suggesting FAP as a possible therapeutic target. Despite overexpression in most cancers and having a role in angiogenesis, inhibition of POP activity has received little attention as an approach to quench tumor growth. We developed two specific and highly effective pseudopeptide inhibitors, M83, which inhibits FAP and POP proteinase activities, and J94, which inhibits only POP. Both suppressed human colon cancer xenograft growth > 90% in mice. By immunohistochemical stains, M83- and J94-treated tumors had fewer microvessels, and apoptotic areas were apparent in both. In response to M83, but not J94, disordered collagen accumulations were observed. Neither M83- nor J94-treated mice manifested changes in behavior, weight, or gastrointestinal function. Tumor growth suppression was more extensive than noted with recently reported efforts by others to inhibit FAP proteinase function or reduce FAP expression. Diminished angiogenesis and the accompanying profound reduction in tumor growth suggest that inhibition of either FAP or POP may offer new therapeutic approaches that directly target TMEs.
PMCID: PMC4309729  PMID: 25622898
FAP, fibroblast activation protein; POP, prolyl oligopeptidase; TME, tumor microenvironment; DPPIV, dipeptidyl peptidase IV; ECM, extracellular matrix; IHC, immunohistochemistry; CAFs, cancer-associated fibroblasts; MMPs, matrix metalloproteinases
3.  Post-modification of preformed liposomes with novel non-phospholipid poly(ethylene glycol)-conjugated hexadecylcarbamoylmethyl hexadecanoic acid for enhanced circulation persistence in vivo 
We report synthesis and characterization of a novel PEG2000-conjugated hexadecylcarbamoylmethyl hexadecanoate (HDAS-PEG) as a PEG-phospholipid substitute for enhancing circulation persistence of liposomes. HDAS-PEG showed critical micelle concentration of 4.25 μM. We used post-insertion technique to introduce HDAS-PEG in outer lipid layer of the preformed liposomes. The presence of surface HDAS-PEG was confirmed by altered electrophoretic mobility, confocal microscopy and PEG estimation by ELISA. The post-inserted HDAS-PEG desorbed at approximately half the rate at which post-inserted DSPE-PEG desorbed from the liposome surface. HDAS-PEG significantly reduced liposome-induced complement activation (C4d, Bb and SC5b); HDAS-PEG was more effective than more commonly used DSPE-PEG in this capacity. For studying circulation persistence, the liposomes were labeled with 99mTc radionuclide and administered in rats. 99mTc-HDAS-PEG-liposomes showed prolonged persistence in blood as compared to that shown by 99mTc-plain liposomes. After 24 h of administration, < 1% of 99mTc-plain liposomes remained in blood, whereas approximately 28% of injected 99mTc-HDAS-PEG-liposomes were present in blood. In comparison, only 4.8% of 99mTc-DSPE-PEG-liposomes was measured in blood after 24 h. As expected, the clearance route of the liposomes was through liver and spleen. These results demonstrate the potential of a novel non-phosphoryl HDAS-PEG for surface modification of preformed liposomes with a goal of prolonging their circulation persistence and more effective inhibition of complement activation.
PMCID: PMC3635076  PMID: 23419666
Liposomes; Poly(ethylene glycol); Circulation persistence; Post-insertion; Complement
4.  Modulation of oxidative stability of haemoglobin inside liposome-encapsulated haemoglobin 
Journal of microencapsulation  2012;30(5):471-478.
The major hurdle in the formulation of liposome-encapsulated haemoglobin (LEH) is the oxidation of haemoglobin (Hb) into methaemoglobin during storage and after administration. In order to reduce this oxidative degradation, we tested various reducing conditions in the presence of catalase. We found that at 37°C more than 50% of Hb oxidized to methaemoglobin within 24 h, whereas in presence of catalase, the oxidation was significantly reduced. The effect of catalase was further enhanced by a reduction mixture containing β-NAD, d-glucose, adenine, inosine, MgCl2, KCl, KH2PO4 and Na2HPO4−, only 14% methaemoglobin was generated in the presence of catalase and reduction mixture (CRM). Contrary to the expectation, glutathione, deferoxamine and homocysteine enhanced Hb oxidation. The presence of CRM inside liposomes (250 nm) significantly decreased Hb oxidation. The results suggest that catalase and a well-defined mixture of co-factors may help control Hb oxidation for improvement in the functional life of LEH.
PMCID: PMC3696053  PMID: 23231644
haemoglobin; transfusion; methaemoglobin; oxygen carriers; liposomes; catalase
5.  Capsazepine, a TRPV1 antagonist, sensitizes colorectal cancer cells to apoptosis by TRAIL through ROSg–JNK–CHOP-mediated upregulation of death receptors 
Free radical biology & medicine  2012;53(10):1977-1987.
A major problem in clinical trials of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as cancer therapy is the development of resistance to TRAIL. Therefore, agents that can overcome TRAIL resistance have great therapeutic potential. In this study, we evaluated capsazepine, a TRPV1 antagonist, for its ability to sensitize human colon cancer cells to TRAIL-induced apoptosis. Capsazepine potentiated the effect of TRAIL, as shown by its effect on intracellular esterase activity; activation of caspase-8,–9, and -3; and colony-formation assay. Capsazepine induced death receptors (DRs) DR5 and DR4, but not decoy receptors, at the transcriptional level and in a non-cell-type-specific manner. DR induction was dependent on CCAAT/enhancer-binding protein homologous protein (CHOP), as shown by (a) the induction of CHOP by capsazepine and (b) the abolition of DR- and potentiation of TRAIL-induced apoptosis by CHOP gene silencing. CHOP induction was also reactive oxygen species (ROS)-dependent, as shown by capsazepine’s ability to induce ROS and by the quenching of ROS by N-acetylcysteine or glutathione, which prevented induction of CHOP and DR5 and consequent sensitization to TRAIL. Capsazepine’s effects appeared to be mediated via JNK, as shown by capsazepine’s ability to induce JNK and by the suppression of both CHOP and DR5 activation by inhibition of JNK. Furthermore, ROS sequestration abrogated the activation of JNK. Finally, capsazepine downregulated the expression of various antiapoptotic proteins (e.g., cFLIP and survivin) and increased the expression of proapoptotic proteins (e.g., Bax and p53). Together, our results indicate that capsazepine potentiates the apoptotic effects of TRAIL through downregulation of cell survival proteins and upregulation of death receptors via the ROS–JNK–CHOP-mediated pathway.
PMCID: PMC3731040  PMID: 22922338
TRPV1 antagonist; TRAIL; Apoptosis; Death receptor; Free radicals
6.  Ursolic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in an Orthotopic Nude Mouse Model by Targeting Multiple Cell Signaling Pathways: Chemosensitization with Capecitabine 
Development of chemoresistance, poor prognosis, and metastasis often renders the current treatments for colorectal cancer (CRC) ineffective. Whether ursolic acid (UA), a component of numerous medicinal plants, either alone or in combination with capecitabine, can inhibit the growth and metastasis of human CRC was investigated.
Experimental design
The effect of UA on proliferation of colorectal cancer cell lines was examined by mitochondrial dye-uptake assay, apoptosis by esterase staining, NF-κB activation by DNA binding assay and protein expression by western blot. The effect of UA on the growth and chemosensitization was also examined in orthotopically-implanted CRC in nude mice.
We found that UA inhibited the proliferation of different colon cancer cell lines. This is correlated with inhibition of constitutive NF-κB activation and downregulation of cell survival (Bcl-xL, Bcl-2, cFLIP, survivin), proliferative (Cyclin D1), and metastatic (MMP-9, VEGF, ICAM-1) proteins. When examined in an orthotopic nude-mice model, UA significantly inhibited tumor volume, ascites formation and distant organ metastasis, and this effect was enhanced with capecitabine. Immunohistochemistry of tumor tissue indicated that UA downregulated biomarkers of proliferation (Ki-67) and microvessel density (CD31). This effect was accompanied by suppression of NF-κB, STAT3, and β-catenin. In addition, UA suppressed EGFR, and induced p53, and p21 expression. We also observed bioavailability of UA in the serum and tissue of animals.
Overall our results demonstrate that UA can inhibit the growth and metastasis of CRC and further enhance the therapeutic effects of capecitabine through suppression of multiple biomarkers linked to inflammation, proliferation, invasion, angiogenesis, and metastasis.
PMCID: PMC3677707  PMID: 22832932
7.  Cardamonin Inhibits Osteoclastogenesis Induced by Tumor Cells Through Interruption of the Signaling Pathway Activated by Receptor Activator of NF-κB Ligand 
Cancer letters  2011;10.1016/j.canlet.2011.12.011.
Bone loss/resorption or osteoporosis is a disease that is accelerated with aging and age-associated chronic diseases such as cancer. Bone loss has been associated with human multiple myeloma, breast cancer, and prostate cancer and is usually treated with a bisphosphonate. Because of the numerous side effects of the currently available drugs, the search continues for safe and effective therapies for bone loss. Recently, receptor activator of NF-κB ligand (RANKL), a member of the TNF superfamily, has emerged as a major mediator of bone loss via activation of osteoclastogenesis. We have identified cardamonin, a chalcone first isolated from grass cardamom (Alpinia katsumadai Hayata), that can affect osteoclastogenesis through modulation of RANKL. We found that treatment of monocytes with cardamonin suppressed RANKL-induced NF-κB activation and this suppression correlated with inhibition of IκBα kinase and of phosphorylation and degradation of IκBα, an inhibitor of NF-κB. Cardamonin suppressed the differentiation of monocytes to osteoclasts in a dose-dependent and time-dependent manner. We also found that an NF-κB–specific inhibitory peptide blocked RANKL-induced osteoclastogenesis, indicating a direct link with NF-κB. Finally, osteoclastogenesis induced by human breast cancer cells or human multiple myeloma cells was completely suppressed by cardamonin. Collectively, our results indicate that cardamonin suppresses osteoclastogenesis induced by RANKL and tumor cells by suppressing activation of the NF-κB pathway.
PMCID: PMC3769506  PMID: 22182452
Osteoclastogenesis; RANKL; NF-κB; Cancer; Cardamonin
8.  RANKL Signaling and Osteoclastogenesis Is Negatively Regulated by Cardamonin 
PLoS ONE  2013;8(5):e64118.
Bone loss/resorption or osteoporosis is a disease that is accelerated with aging and age-associated chronic diseases such as cancer. Bone loss has been linked with human multiple myeloma, breast cancer, and prostate cancer and is usually treated with bisphosphonates, and recently approved denosumab, an antibody against receptor activator of NF-κB ligand (RANKL). Because of the numerous side effects of the currently available drugs, the search continues for safe and effective therapies for bone loss. RANKL, a member of the TNF superfamily, has emerged as a major mediator of bone loss via activation of osteoclastogenesis. We have identified cardamonin, a chalcone isolated from Alpinia katsumadai Hayata that can affect osteoclastogenesis through modulation of RANKL. We found that treatment of monocytes with cardamonin suppressed RANKL-induced NF-κB activation and this suppression correlated with inhibition of IκBα kinase and of phosphorylation and degradation of IκBα, an inhibitor of NF-κB. Furthermore, cardamonin also downregulated RANKL-induced phosphorylation of MAPK including ERK and p38 MAPK. Cardamonin suppressed the RANKL-induced differentiation of monocytes to osteoclasts in a dose-dependent and time-dependent manner. We also found that an inhibitor of NF-κB essential modulator (NEMO) blocked RANKL-induced osteoclastogenesis, indicating a direct link with NF-κB. Finally, osteoclastogenesis induced by human breast cancer cells or human multiple myeloma cells were completely suppressed by cardamonin. Collectively, our results indicate that cardamonin suppresses osteoclastogenesis induced by RANKL and tumor cells by suppressing activation of the NF-κB and MAPK pathway.
PMCID: PMC3656934  PMID: 23691159
9.  Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic Biomarkers 
Numerous cancer therapeutics were originally identified from natural products used in traditional medicine. One such agent is acetyl-11-keto-beta-boswellic acid (AKBA), derived from the gum resin of the Boswellia serrata known as Salai guggal or Indian frankincense. Traditionally it has been used in Ayurvedic medicine to treat proinflammatory conditions. In the present report, we hypothesized that AKBA can affect the growth and metastasis of colorectal cancer (CRC) in orthotopically-implanted tumors in nude mice. We found that the oral administration of AKBA (50-200 mg/kg) dose-dependently inhibited the growth of CRC tumors in mice, resulting in decrease in tumor volumes than those seen in vehicle-treated mice without significant decreases in body weight. In addition, we observed that AKBA was highly effective in suppressing ascites and distant metastasis to the liver, lungs, and spleen in orthotopically-implanted tumors in nude mice. When examined for the mechanism, we found that markers of tumor proliferation index Ki-67 and the microvessel density CD31; were significantly downregulated by AKBA treatment. We also found that AKBA significantly suppressed NF-κB activation in the tumor tissue and expression of pro-inflammatory (COX2), tumor survival (bcl-2, bcl-xL, IAP-1, survivin), proliferative (cyclin D1), invasive (ICAM-1, MMP-9) and angiogenic (CXCR4 and VEGF) biomarkers. When examined for serum and tissue levels of AKBA, a dose-dependent increase in the levels of the drug was detected, indicating its bioavailability. Thus, our findings suggest that this boswellic acid analogue can inhibit the growth and metastasis of human CRC in vivo through downregulation of cancer-associated biomarkers.
PMCID: PMC3246525  PMID: 21702037
AKBA; colorectal cancer; NF-κB; growth; metastasis
10.  Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis 
The incidence of cancer is significantly lower in regions where turmeric is heavily consumed. Whether lower cancer incidence is due to turmeric was investigated by examining its effects on tumor cell proliferation, on pro-inflammatory transcription factors NF-κB and STAT3, and on associated gene products.
Methods and results
Cell proliferation and cell cytotoxicity were measured by the MTT method, NF-κB activity by EMSA, protein expression by Western blot analysis, ROS generation by FACS analysis, and osteoclastogenesis by TRAP assay. Turmeric inhibited NF-κB activation and down-regulated NF-κB-regulated gene products linked to survival (Bcl-2, cFLIP, XIAP, and cIAP1), proliferation (cyclin D1 and c-Myc), and metastasis (CXCR4) of cancer cells. The spice suppressed the activation of STAT3, and induced the death receptors (DR)4 and DR5. Turmeric enhanced the production of ROS, and suppressed the growth of tumor cell lines. Furthermore, turmeric sensitized the tumor cells to chemotherapeutic agents capecitabine and taxol. Turmeric was found to be more potent than pure curcumin for cell growth inhibition. Turmeric also inhibited NF-κB activation induced by RANKL that correlated with the suppression of osteoclastogenesis.
Our results indicate that turmeric can effectively block the proliferation of tumor cells through the suppression of NF-κB and STAT3 pathways.
PMCID: PMC3392043  PMID: 22147524
Death receptor; NF-κB; Osteoclastogenesis; STAT3; Turmeric
11.  Cancer and diet: How are they related? 
Free radical research  2011;45(8):864-879.
Extensive research in the past decade has revealed cancer to be a multigenic disease caused by perturbation of multiple cell signalling pathways and dysregulation of numerous gene products, all of which have been linked to inflammation. It is also becoming evident that various lifestyle factors, such as tobacco and alcohol use, diet, environmental pollution, radiation and infections, can cause chronic inflammation and lead to tumourigenesis. Chronic diseases caused by ongoing inflammation therefore require chronic, not acute, treatment. Nutraceuticals, compounds derived from fruits, vegetables, spices and cereals, can be used chronically. This study discusses the molecular targets of some nutraceuticals that happen to be markers of chronic inflammation and how they can prevent or treat cancer. These naturally-occurring agents in the diet have great potential as anti-cancer drugs, thus proving Hippocrates, who proclaimed 25 centuries ago, ‘Let food be thy medicine and medicine be thy food’.
PMCID: PMC3564493  PMID: 21651450
Dietary agents; inflammation; cancer
12.  Triptolide, Histone Acetyltransferase Inhibitor, Suppresses Growth and Chemosensitizes Leukemic Cells Through Inhibition of Gene Expression Regulated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK Pathway 
Biochemical pharmacology  2011;82(9):1134-1144.
Triptolide, a diterpene triepoxide, from the Chinese herb Tripterygium wilfordii Hook.f, exerts its anti-inflammatory and immunosuppressive activities by inhibiting the transcription factor nuclear factor-κB (NF-κB) pathway, through a mechanism not yet fully understood. We found that triptolide, in nanomolar concentrations, suppressed both constitutive and inducible NF-κB activation, but did not directly inhibit binding of p65 to the DNA. The diterpene did block TNF-induced ubiquitination, phosphorylation, and degradation of IκBα, the inhibitor of NF-κB and inhibited acetylation of p65 through suppression of binding of p65 to CBP/p300. Triptolide also inhibited the IκBα kinase (IKK) that activates NF-κB and phosphorylation of p65 at serine 276, 536. Furthermore, the NF-κB reporter activity induced by TNF-TNFR1-TRADD-TRAF2- NIK-TAK1-IKKβ was abolished by the triepoxide. Triptolide also abrogated TNF-induced expression of cell survival proteins (XIAP, Bcl-xL, Bcl-2, survivin, cIAP-1 and cIAP-2), cell proliferative proteins (cyclin D1, c-myc and cyclooxygenase-2), and metastasis proteins (ICAM-1 and MMP-9). This led to enhancement of apoptosis induced by TNF, taxol, and thalidomide by the diterpene and to suppression of tumor invasion. Overall, our results demonstrate that triptolide can block the inflammatory pathway activated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK, sensitizes cells to apoptosis, and inhibits invasion of tumor cells.
PMCID: PMC3191321  PMID: 21820422
Triptolide; TNF; NF-κB; CBP/p300
13.  Acetyl-11-keto-β-Boswellic Acid Suppresses Invasion of Pancreatic Cancer Cells Through The Downregulation of CXCR4 Chemokine Receptor Expression 
Ninety percent of cancer-mediated deaths are due to metastasis of the tumor, but the mechanisms controlling metastasis remain poorly understood. Thus, no therapy targeting this process has yet been approved. Chemokines and their receptors are mediators of chronic inflammation and have been linked to the metastasis of numerous cancers. More recently, the CXC chemokine receptor 4 (CXCR4) has emerged as a key mediator of tumor metastasis; therefore, identification of inhibitors of this receptor has the potential to abrogate metastasis. In this report, we demonstrate that acetyl-11-keto-β-boswellic acid (AKBA), a component of the therapeutic plant Boswellia serrata, can downregulate CXCR4 expression in pancreatic cancer cells. The reduction in CXCR4 induced by this terpenoid was found to be cell-type specific, as its expression was also abrogated in leukemia, myeloma, and breast cancer cell lines. Neither proteasome inhibitors nor lysosomal stabilization could prevent the AKBA-induced reduction in CXCR4 expression, and downregulation occurred at the transcriptional level. Suppression of CXCR4 by AKBA was accompanied by the inhibition of pancreatic cancer cell invasion, which is induced by CXCL12, the ligand for CXCR4. In addition, abrogation of the expression of chemokine receptor by AKBA was found in human pancreatic tissues from orthotopic animal model. AKBA also abolished breast tumor cell invasion, and this effect correlated with the disappearance of both the CXCR4 mRNA and CXCR4 protein. Overall, our results show that AKBA is a novel inhibitor of CXCR4 expression and, thus, has the potential to suppress the invasion and metastasis of cancer cells.
PMCID: PMC3082612  PMID: 21448932
CXCR4; CXCL12; AKBA; Metastasis
14.  Gambogic Acid Inhibits STAT3 Phosphorylation Through Activation of Protein Tyrosine Phosphatase SHP-1: Potential Role in Proliferation and Apoptosis 
The transcription factor, signal transducer and activator of transcription 3 (STAT3), is associated with proliferation, survival, and metastasis of cancer cells. We investigated whether gambogic acid (GA), a xanthone derived from the resin of traditional Chinese medicine, Gamboge hanburyi (mangosteen), can regulate the STAT3 pathway, leading to suppression of growth and sensitization of cancer cells. We found that GA induced apoptosis in human multiple myeloma cells that correlated with the inhibition of both constitutive and inducible STAT3 activation. STAT3 phosphorylation at both tyrosine residue 705 and serine residue 727 was inhibited by GA. STAT3 suppression was mediated through the inhibition of activation of the protein tyrosine kinases Janus-activated kinase (JAK) 1, and JAK2. Treatment with the protein tyrosine phosphatase (PTP) inhibitor pervanadate reversed the GA-induced down-regulation of STAT3, suggesting the involvement of a PTP. We also found that GA induced the expression of the PTP SHP-1. Deletion of the SHP-1 gene by small interfering RNA suppressed the ability of GA to inhibit STAT3 activation and to induce apoptosis, suggesting the critical role of SHP-1 in its action. Moreover, GA down-regulated the expression of STAT3-regulated antiapoptotic (Bcl-2, Bcl-xL, and Mcl-1), proliferative (cyclin D1), and angiogenic (VEGF) proteins, and this correlated with suppression of proliferation and induction of apoptosis. Overall, these results suggest that GA blocks STAT3 activation, leading to suppression of tumor cell proliferation and induction of apoptosis.
PMCID: PMC3131433  PMID: 21490133
Gambogic acid; STAT3; Apoptosis; Proliferation; Cancer
15.  The Role of Chalcones in Suppression of NF-κB-Mediated Inflammation and Cancer 
International immunopharmacology  2010;11(3):295-309.
Although consumption of fruits, vegetables, spices, cereals and pulses has been associated with lower incidence of cancer and other chronic diseases, how these dietary agents and their active ingredients minimize these diseases, is not fully understood. Whether it is oranges, kawa, hops, water-lilly, locorice, wax apple or mulberry, they are all connected by a group of aromatic ketones, called chalcones (1,3-diaryl-2-propen-1-ones). Some of the most significant chalcones identified from these plants include flavokawin, butein, xanthoangelol, 4-hydroxyderricin, cardamonin, 2′,4′-dihydroxychalcone, isoliquiritigenin, isosalipurposide, and naringenin. These chalcones have been linked with immunomodulation, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, anticancer, and antidiabetic activities. The current review, however, deals with the role of various chalcones in inflammation that controls both the immune system and tumorigenesis. Inflammatory pathways have been shown to mediate the survival, proliferation, invasion, angiogenesis and metastasis of tumors. How these chalcones modulate inflammatory pathways, tumorigenesis and immune system is the focus of this review.
PMCID: PMC3058688  PMID: 21184860
Chalcone; nuclear factor-κB; Inflammation; tumor cell proliferation; invasion and angiogenesis; apoptosis
16.  ROS and CHOP are Critical for Dibenzylideneacetone to Sensitize Tumor Cells to TRAIL Through Induction of Death Receptors and Downregulation of Cell Survival Proteins 
Cancer research  2010;71(2):538-549.
Because TRAIL selectively kills tumor cells, it is being tested in cancer patients. Unfortunately, patients develop resistance to the cytokine, therefore, agents which can sensitize cells to TRAIL are urgently needed. In the present study, we investigated whether dibenzylideneacetone (DBA) can sensitize cancer cells to TRAIL and potentiates TRAIL-induced apoptosis. As indicated by accumulation of the membrane phospholipid phosphatidylserine, DNA breaks, intracellular esterase activity, and activation of caspase-8, -9, and -3, we concluded that DBA potentiated TRAIL-induced apoptosis in colon cancer cells. DBA also converted TRAIL resistant-cells to TRAIL-sensitive. When examined for the mechanism, we found that DBA decreased the expression of antiapoptotic proteins and decoy recptor-2 and increased proapoptotic proteins. DBA also induced both death receptor (DR)-5 and DR4. Knockdown of DR5 and DR4 by small interfering RNA (SiRNA) reduced the sensitizing effect of DBA on TRAIL-induced apoptosis. In addition, DBA increased the expression of CHOP proteins. Knockdown of CHOP by siRNA decreased the induction of DBA-induced DR5 expression and apoptosis. Induction of receptors by DBA, however, was p53-independent, as deletion of p53 had no effect on receptor induction. We observed that DBA-induced induction of DR5 and DR4 was mediated through generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of death receptors and suppression of cell survival proteins by DBA. Overall, our results demonstrate that DBA potentiates TRAIL-induced apoptosis through downregulation of cell survival proteins and upregulation of death receptors via ROS-mediated CHOP activation.
PMCID: PMC3022089  PMID: 21127198
DBA; TRAIL; apoptosis; death receptors; ROS
17.  Delivery of anti-inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer 
Biochemical pharmacology  2010;80(12):1833-1843.
Extensive research within the last two decades has revealed that most chronic illnesses, including cancer, diabetes, and cardiovascular and pulmonary diseases, are mediated through chronic inflammation. Thus, suppressing chronic inflammation has the potential to delay, prevent, and even treat various chronic diseases, including cancer. Various nutraceuticals from fruits, vegetables, vitamins, spices, legumes, and traditional Chinese and Ayurvedic medicine have been shown to safely suppress proinflammatory pathways; however, their low bioavailability in vivo limits their use in preventing and treating cancer. We describe here the potential of nanotechnology to fill this gap. Several nutraceuticals, including curcumin, green tea polyphenols, coenzyme Q, quercetin, thymoquinone and others, have been packaged as nanoparticles and proven to be useful in “nano-chemoprevention” and “nano-chemotherapy.”
PMCID: PMC2974020  PMID: 20654584
Inflammation; diabetes; cancer; NF-κB; curcumin; nutraceuticals; nanotechnology
18.  Thiocolchicoside Exhibits Anticancer Effects through Downregulation of NF-κB Pathway and Its Regulated Gene Products Linked to Inflammation and Cancer 
The discovery of new uses for older, clinically approved drugs is one way to expedite drug development for cancer. Thiocolchicoside, a semisynthetic colchicoside from the plant Gloriosa superba, is a muscle relaxant and used to treat rheumatologic and orthopedic disorders because of its analgesic and anti-inflammatory mechanisms. Given that activation of the transcription factor NF-κB plays a major role in inflammation and tumorigenesis, we postulated that thiocolchicoside would inhibit NF-κB and exhibit anticancer effects through the modulation of NF-κB–regulated proteins. We show that thiocolchicoside inhibited proliferation of leukemia, myeloma, squamous cell carcinoma, breast, colon, and kidney cancer cells. Formation of tumor colonies was also suppressed by thiocolchicoside. The colchicoside induced apoptosis, as indicated by caspase-3 and poly(ADP-ribose) polymerase cleavage, and suppressed the expression of cell survival [e.g., Bcl-2, X-linked inhibitor of apoptosis (XIAP), MCL-1, bcl-xL, cIAP-1, cIAP-2, and cFLIP] proteins. Cell proliferation biomarkers such as c-MYC and phosphorylation of phosphoinositide 3-kinase and glycogen synthase kinase 3β were also blocked by thiocolchicoside. Because most cell survival and proliferation gene products are regulated by NF-κB, we studied the effect of thiocolchicoside on this transcription factor and found that thiocolchicoside inhibited NF-κB activation, degradation of inhibitory κBα (IκBα), IκBα ubiquitination, and phosphorylation, abolished the activation of IκBα kinase, and suppressed p65 nuclear translocation. This effect of thiocolchicoside on the NF-κB pathway led to inhibition of NF-κB reporter activity and cyclooxygenase-2 promoter activity. Our results indicate that thiocolchicoside exhibits anticancer activity through inhibition of NF-κB and NF-κB–regulated gene products, which provides novel insight into a half-century old drug.
PMCID: PMC3142676  PMID: 20978115
19.  γ-Tocotrienol Inhibits Pancreatic Tumors and Sensitizes Them to Gemcitabine Treatment by Modulating the Inflammatory Microenvironment 
Cancer research  2010;70(21):8695-8705.
Pancreatic cancers generally respond poorly to chemotherapy, prompting a need to identify agents that could sensitize tumors to treatment. In this study, we investigated the response of human pancreatic cells to gamma-tocotrienol (γ-T3), a novel, unsaturated form of vitamin E found in palm oil and rice bran oil, to determine whether it could potentiate the effects of gemcitabine, a standard of care in clinical treatment of pancreatic cancer. γ-T3 inhibited the in vitro proliferation of pancreatic cancer cell lines with variable p53 status and potentiated gemcitabine-induced apoptosis. These effects correlated with an inhibition of NF-κB activation by γ-T3 and a suppression of key cellular regulators including cyclin D1, c-Myc, COX-2, Bcl-2, cIAP, survivin, VEGF, ICAM-1, and CXCR4. In an orthotopic nude mouse model of human pancreatic cancer, oral administration of γ-T3 inhibited tumor growth and enhanced the antitumor properties of gemcitabine. Immunohistochemical analysis indicated a correlation between tumor growth inhibition and reduced expression of Ki-67, COX-2, MMP-9, NF-κB p65 and VEGF in the tissue. Combination treatment also downregulated NF-κB activity along with the NF-κB-regulated gene products cyclin D1, c-Myc, VEGF, MMP-9, CXCR4. Consistent with an enhancement of tumor apoptosis caspase activation was observed in tumor tissues. Overall, Our findings suggest that γ-T3 can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing of NF-κB-mediated inflammatory pathways linked to tumorigenesis.
PMCID: PMC2970705  PMID: 20864511
tocotrienol; pancreatic cancer; NF-κB; inflammation
20.  Cyclodextrin-Complexed Curcumin Exhibits Anti-inflammatory and Antiproliferative Activities Superior to Those of Curcumin Through Higher Cellular Uptake 
Biochemical pharmacology  2010;80(7):1021-1032.
Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with multiple beneficial activities, but its optimum potential is limited by poor bioavailability, in part due to lack of solubility in aqueous solvents. To overcome the solubility problem, we have recently developed a novel cyclodextrin complex of curcumin (CDC) and examined here this compound for anti-inflammatory and antiproliferative effects. Using the electrophoretic gel shift mobility assay, we found that CDC was more active than free curcumin in inhibiting TNF-induced activation of the inflammatory transcription factor NF-κB and in suppressing gene products regulated by NF-κB, including those involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). CDC was also more active than free curcumin in inducing the death receptors DR4 and DR5. Annexin V staining, cleavage of caspase-3 and PARP, and DNA fragmentation showed that CDC was more potent than free curcumin in inducing apoptosis of leukemic cells. Antiproliferative assays also demonstrated that CDC was more active than free curcumin in suppressing proliferation of various cancer cell lines. The cyclodextrin vehicle had no effect in these assays. Compared with free curcumin, CDC had a greater cellular uptake and longer half-life in the cells. Overall we demonstrated that CDC had superior attributes compared with free curcumin for cellular uptake and for antiproliferative and anti-inflammatory activities.
PMCID: PMC2923254  PMID: 20599780
Cyclodextrin complex of curcumin; Solubility; Apoptosis; NF-κB; Cancer
21.  Embelin Suppresses Osteoclastogenesis Induced by RANKL and Tumor cells In Vitro Through Inhibition of the NF-κB Cell Signaling Pathway 
Molecular cancer research : MCR  2010;8(10):1425-1436.
Most patients with cancer die not because of the tumor in the primary site, but because it has spread to other sites. Common tumors, such as breast, lung and prostate tumors, frequently metastasize to the bone. It is now well recognized that osteoclasts are responsible for the osteolysis observed in bone metastases of the tumor. RANKL, a member of the TNF superfamily and an activator of the NF-κB signaling pathway, has emerged as a major mediator of bone loss, commonly associated with cancer and other chronic inflammatory diseases. Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone), from an Ayurvedic medicinal plant Embelia ribes, has been shown to bind and inhibit XIAP protein and inhibit inflammatory pathways. We investigated whether embelin could inhibit osteoclastogenesis-associated bone loss induced by RANKL and by tumor cells in vitro. We found that embelin suppressed the RANKL-induced differentiation of monocytes into osteoclasts. This benzoquinone also suppressed the osteoclastogenesis induced by multiple myeloma and by breast cancer cells. This effect of embelin correlated with the suppression of NF-κB activation, inhibition of IκBα phosphorylation and IκBα degradation. Inhibition of IκBα phosphorylation was due to the inhibition of IκBα kinase activation. Furthermore, by using an inhibitor of the IκBα kinase γ or NF-κB essential modulator (NEMO), the regulatory component of the IκBα kinase complex, we demonstrated that the NF-κB signaling pathway is mandatory for RAW264.7 differentiation into osteoclasts. Thus, inhibitors of RANKL-induced NF-κB activation have great potential as therapeutic agents for osteoporosis and cancer-linked bone loss.
PMCID: PMC2974017  PMID: 20826545
Osteoclastogenesis; RANKL; NF-κB; Tumors; Signaling
22.  Design of Curcumin Loaded PLGA Nanoparticles Formulation with Enhanced Cellular Uptake, and Increased Bioactivity in vitro and Superior Bioavailability in vivo 
Biochemical pharmacology  2009;79(3):330-338.
Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with antioxidant, anti-inflammatory, anti-proliferative, anticancer, antidiabetic, antirheumatic, and antiviral effects, but its optimum potential is limited by its lack of solubility in aqueous solvents and poor oral bioavailability. We employed a polymer-based nanoparticle approach to improve bioavailability. Curcumin was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy indicated a particle diameter of 80.9 nm. This curcumin, renamed from hereon “as curcumin (NP)”, was characterized for its biological activity. In vitro curcumin (NP) exhibited very rapid (2 h vs > 72 h) and more efficient cellular uptake then curcumin. Estrase staining revealed that curcumin (NP) was at least as potent as or more potent than curcumin in inducing apoptosis of leukemic cells and in suppressing proliferation of various tumor cell lines. When examined by electrophoretic gel shift mobility assay, curcumin (NP) was more active than curcumin in inhibiting TNF-induced NF-κB activation and in suppression of NF-κB-regulated proteins involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). In mice, curcumin (NP) was more bioavailable and had a longer half-life than curcumin. Overall we demonstrate that curcumin-loaded PLGA nanoparticles formulation has enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo over curcumin.
PMCID: PMC3181156  PMID: 19735646
Nanoparticles; Apoptosis; Inflammation; TNF-alpha
23.  Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor 
Although metastasis accounts for >90% of cancer-related deaths, no therapeutic that targets this process has yet been approved. Because the chemokine receptor CXCR4 is one of the targets closely linked with tumor metastasis, inhibitors of this receptor have the potential to abrogate metastasis. In the current report, we demonstrate that celastrol can downregulate the CXCR4 expression on breast cancer MCF-7 cells stably transfected with HER2, an oncogene known to induce the chemokine receptor. Downregulation of CXCR4 by the triterpenoid was not cell type-specific as downregulation occurred in colon cancer, squamous cell carcinoma, and pancreatic cancer cells. Decrease in CXCR4 expression was not due to proteolysis as neither proteasome inhibitors nor lysosomal stabilization had any effect. Quantitative reverse transcription polymerase chain reaction analysis revealed that downregulation of CXCR4 messenger RNA (mRNA) by celastrol occurred at the translational level. Chromatin immunoprecipitation analysis revealed regulation at the transcriptional level as well. Abrogation of the chemokine receptor by celastrol or by gene-silencing was accompanied by suppression of invasiveness of colon cancer cells induced by CXCL12, the ligand for CXCR4. This effect was not cell type-specific as celastrol also abolished invasiveness of pancreatic tumor cells, and this effect again correlated with the disappearance of both the CXCR4 mRNA and CXCR4 protein. Other triterpenes, such as withaferin A and gedunin, which are known to inhibit Hsp90, did not downregulate CXCR4 expression, indicating that the effects were specific to celastrol. Overall, these results show that celastrol has potential in suppressing invasion and metastasis of cancer cells by down-modulation of CXCR4 expression.
PMCID: PMC3142743  PMID: 20798912
CXCR4; CXCL12; Colon cancer; NF-κB
24.  Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer 
Toxins  2010;2(10):2428-2466.
Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”.
PMCID: PMC3153165  PMID: 22069560
triterpenoids; nuclear factor-κB; inflammation; tumor cell proliferation; invasion; angiogenesis; apoptosis
25.  Effect of Cyclodextrin Complexation of Curcumin on its Solubility and Antiangiogenic and Anti-inflammatory Activity in Rat Colitis Model 
AAPS PharmSciTech  2009;10(3):752-762.
The purpose of the study was to prepare and evaluate the anti-inflammatory activity of cyclodextrin (CD) complex of curcumin for the treatment of inflammatory bowel disease (IBD) in colitis-induced rat model. Inclusion complexes of curcumin were prepared by common solvent and kneading methods. These complexes were further evaluated for increase in solubility of poorly soluble curcumin. The inclusion complexes were characterized for enhancement in solubility, in vitro dissolution, surface morphology, infrared, differential scanning calorimetry, and X-ray studies. Solubility, phase solubility, and in vitro dissolution studies showed that curcumin has higher affinity for hydroxypropyl-β-CD (HPβCD) than other CDs. HPβCD complex of curcumin was further investigated for its antiangiogenic and anti-inflammatory activity using chick embryo and rat colitis model. HPβCD complex of curcumin proved to be a potent angioinhibitory compound, as demonstrated by inhibition of angiogenesis in chorioallantoic membrane assay. Curcumin- and HPβCD-treated rats showed a faster weight gain compared to dextran sulfate solution (DSS) controls. Whole colon length appeared to be significantly longer in HPβCD-treated rats than pure curcumin and DSS controls. An additional finding in the DSS-treated rats was the predominance of eosinophils in the chronic cell infiltrate. Decreased mast cell numbers in the mucosa of the colon of CD of curcumin- and pure-curcumin-treated rats was observed. This study concluded that the degree of colitis caused by administration of DSS was significantly attenuated by CD of curcumin. Being a nontoxic natural dietary product, curcumin could be useful in the therapeutic strategy for IBD patients.
PMCID: PMC2802154  PMID: 19495987
antiangiogenesis; curcumin; cyclodextrin; inflammatory bowel disease; solubility

Results 1-25 (25)