PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Targeting Type Iγ Phosphatidylinositol Phosphate Kinase Inhibits Breast Cancer Metastasis 
Oncogene  2014;34(35):4635-4646.
Most deaths from breast cancer are caused by metastasis, a complex behavior of cancer cells involving migration, invasion, survival, and microenvironment manipulation. Type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) regulates focal adhesion assembly, and its phosphorylation at Y639 is critical for cell migration induced by EGF. However, the role of this lipid kinase in tumor metastasis remains unclear. Here we report that PIPKIγ is vital for breast cancer metastasis. Y639 of PIPKIγ can be phosphorylated by stimulation of EGF and hepatocyte growth factor (HGF), two promoting factors for breast cancer progression. Histological analysis revealed elevated Y639-phosphorylation of PIPKIγ in invasive ductal carcinoma lesions and suggested a positive correlation with tumor grade. Orthotopically transplanted, PIPKIγ-depleted breast cancer cells showed substantially reduced growth and metastasis, as well as suppressed expression of multiple genes related to cell migration and microenvironment manipulation. Re-expression of wild-type PIPKIγ in PIPKIγ-depleted cells restored tumor growth and metastasis, reinforcing the importance of PIPKIγ in breast cancer progression. Y639-to-F or a kinase-dead mutant of PIPKIγ could not recover the diminished metastasis in PIPKIγ-depleted cancer cells, suggesting that Y639 phosphorylation and lipid kinase activity are both required for development of metastasis. Further analysis with in vitro assays indicated that depleting PIPKIγ inhibited cell proliferation, MMP9 secretion, and cell migration and invasion, lending molecular mechanisms for the eliminated cancer progression. These results suggest that PIPKIγ, downstream of EGF and/or HGF receptor, participates in breast cancer progression from multiple aspects and deserves further studies to explore its potential as a therapeutic target.
doi:10.1038/onc.2014.393
PMCID: PMC4459944  PMID: 25486426
breast cancer metastasis; PIPKIγ; EGFR; cell migration; invasion
2.  Role of cystathionine beta synthase in lipid metabolism in ovarian cancer 
Oncotarget  2015;6(35):37367-37384.
Elevated lipid metabolism is implicated in poor survival in ovarian cancer (OC) and other cancers; however, current lipogenesis-targeting strategies lack cancer cell specificity. Here, we identify a novel role of cystathionine beta-synthase (CBS), a sulphur amino acid metabolizing enzyme highly expressed in several ovarian cancer cell lines, in driving deregulated lipid metabolism in OC. We examined the role of CBS in regulation of triglycerides, cholesterol and lipogenic enzymes via the lipogenic transcription factors SREBP1 and SREBP2. CBS silencing attenuated the expression of number of key enzymes involved in lipid synthesis (FASN and ACC1). Additionally CBS abrogates lipid uptake in OC cells. Gene silencing of CBS or SREBPs abrogated cellular migration and invasion in OC, while ectopic expression of SREBPs can rescue phenotypic effects of CBS silencing by restoring cell migration and invasion. Mechanistically, CBS represses SREBP1 and SREBP2 at the transcription levels by modulating the transcription factor Sp1. We further established the roles of both CBS and SREBPs in regulating ovarian tumor growth in vivo. In orthotopic tumor models, CBS or SREBP silencing resulted in reduced tumor cells proliferation, blood vessels formation and lipid content. Hence, cancer-selective disruption of the lipid metabolism pathway is possible by targeting CBS and, at least for OC, promises a profound benefit.
PMCID: PMC4741935  PMID: 26452259
CBS; lipid metabolism; SREBP; ovarian cancer
3.  Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles 
Oncotarget  2014;5(15):6453-6465.
Recently we reported that gold nanoparticles (AuNPs) inhibit ovarian tumor growth and metastasis in mice by reversing epithelial-mesenchymal transition (EMT). Since EMT is known to confer drug resistance to cancer cells, we wanted to investigate whether anti-EMT property of AuNP could be utilized to sensitize ovarian cancer cells to cisplatin. Herein, we report that AuNPs prevent cisplatin-induced acquired chemoresistance and stemness in ovarian cancer cells and sensitize them to cisplatin. AuNPs inhibit cisplatin induced EMT, decrease the side population cells and key stem cell markers such as ALDH1, CD44, CD133, Sox2, MDR1 and ABCG2 in ovarian cancer cells. Mechanistically, AuNPs prevent cisplatin-induced activation of Akt and NF-κB signaling axis in ovarian cancer cells that are critical for EMT, stem cell maintenance and drug resistance. In vivo, AuNPs sensitize orthotopically implanted ovarian tumor to a low dose of cisplatin and significantly inhibit tumor growth via facilitated delivery of both AuNP and cisplatin. These findings suggest that by depleting stem cell pools and inhibiting key molecular pathways gold nanoparticles sensitize ovarian cancer cells to cisplatin and may be used in combination to inhibit tumor growth and metastasis in ovarian cancer.
PMCID: PMC4171643  PMID: 25071019
gold nanoparticle; chemoresistance; cancer stem cell; EMT; NF-κB
4.  An association between type Iγ PI4P 5-kinase and Exo70 directs E-cadherin clustering and epithelial polarization 
Molecular Biology of the Cell  2012;23(1):87-98.
Type Iγ phosphatidylinositol-4-phosphate 5-kinase and Exo70 cooperate in the directed targeting of E-cadherin on the plasma membrane to newly formed adherens junctions. This promotes the regional accumulation of E-cadherin, expansion and maturation of adherens junctions, and differentiation of the lateral membrane domain.
E-Cadherin–mediated formation of adherens junctions (AJs) is essential for the morphogenesis of epithelial cells. However, the mechanisms underlying E-cadherin clustering and AJ maturation are not fully understood. Here we report that type Iγ phosphatidylinositol-4-phosphate 5-kinase (PIPKIγ) associates with the exocyst via a direct interaction with Exo70, the exocyst subunit that guides the polarized targeting of exocyst to the plasma membrane. By means of this interaction, PIPKIγ mediates the association between E-cadherin and Exo70 and determines the targeting of Exo70 to AJs. Further investigation revealed that Exo70 is necessary for clustering of E-cadherin on the plasma membrane and extension of nascent E-cadherin adhesions, which are critical for the maturation of cohesive AJs. In addition, we observed phosphatidylinositol-4,5-bisphosphate (PI4,5P2) accumulation at E-cadherin clusters during the assembly of E-cadherin adhesions. PIPKIγ-generated PI4,5P2 is required for recruiting Exo70 to newly formed E-cadherin junctions and facilitates the assembly and maturation of AJs. These results support a model in which PIPKIγ and PIPKIγ-generated PI4,5P2 pools at nascent E-cadherin contacts cue Exo70 targeting and orient the tethering of exocyst-associated E-cadherin. This could be an important mechanism that regulates E-cadherin clustering and AJ maturation, which is essential for the establishment of solid, polarized epithelial structures.
doi:10.1091/mbc.E11-05-0449
PMCID: PMC3248907  PMID: 22049025

Results 1-4 (4)