Search tips
Search criteria

Results 1-23 (23)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
author:("wynik, David")
1.  Galanin negatively modulates opiate withdrawal via galanin receptor 1 
Psychopharmacology  2011;220(3):619-625.
The neuropeptide galanin has been shown to modulate opiate dependence and withdrawal. These effects could be mediated via activation of one or more of three distinct G-protein coupled receptors, namely GalR1, GalR2 and GalR3.
In this study, we used several transgenic mouse lines to further define the mechanisms underlying the role played by galanin and its receptors in the modulation of morphine dependence. Firstly, transgenic mice expressing β-galactosidase under the control of the galanin promoter were used to assess the regulation of galanin expression in response to chronic morphine administration and withdrawal. Next, the behavioural responses to chronic morphine administration and withdrawal were tested in mice that over-express galanin, lack the GalR1 gene or lack the GalR2 gene.
Transgenic and matched wild-type mice were given increasing doses of morphine followed by precipitation of withdrawal by naloxone and behavioral responses to withdrawal assessed.
Both morphine administration and withdrawal increases galanin gene transcription in the locus coerulus (LC). Increasing galanin levels in the brain reduced signs of opiate withdrawal. Mice lacking GalR1 undergo more severe opiate withdrawal, whereas mice lacking GalR2 show no significant difference in withdrawal signs, compare to matched wild type controls.
Opiate administration and withdrawal increase galanin expression in the LC. Galanin opposes the actions of morphine which lead to opiate dependence and withdrawal, an effect that is mediated via GalR1.
PMCID: PMC3324978  PMID: 21969124
Galanin; galanin receptor 1; mouse; opiate; addiction; withdrawal; locus coeruleus
2.  Galanin-expression and galanin-dependent sensory neurons are not required for itch 
Molecular Pain  2012;8:87.
Galanin is a key modulator of nociception, and it is also required for the developmental survival of a subset of C-fibre sensory neurons which are critical to the mediation of neuropathic and inflammatory pain. However, the potential modulatory roles played by galanin, or the galanin-dependent neurons, in pruritoceptive mechanisms underlying the sensation of itch have not been investigated.
Here we report that mice carrying a loss-of-function mutation in the galanin gene (Gal-KO) show no differences in spontaneous behavioural itch responses compared to wild-type (WT) controls. Similarly, the responses to a range of pruritogens are not significantly different between the two genotypes.
These results suggest that neither galanin expression, nor the galanin-dependent subpopulation of sensory neurons is required for itch-related behaviours.
PMCID: PMC3545919  PMID: 23216829
Itch; Galanin; Pain
3.  Differential roles of galanin on mechanical and cooling responses at the primary afferent nociceptor 
Molecular Pain  2012;8:41.
Galanin is expressed in a small percentage of intact small diameter sensory neurons of the dorsal root ganglia and in the afferent terminals of the superficial lamina of the dorsal horn of the spinal cord. The neuropeptide modulates nociception demonstrating dose-dependent pro- and anti-nociceptive actions in the naïve animal. Galanin also plays an important role in chronic pain, with the anti-nociceptive actions enhanced in rodent neuropathic pain models. In this study we compared the role played by galanin and its receptors in mechanical and cold allodynia by identifying individual rat C-fibre nociceptors and characterising their responses to mechanical or acetone stimulation.
Mechanically evoked responses in C-fibre nociceptors from naive rats were sensitised after close intra-arterial infusion of galanin or Gal2-11 (a galanin receptor-2/3 agonist) confirming previous data that galanin modulates nociception via activation of GalR2. In contrast, the same dose and route of administration of galanin, but not Gal2-11, inhibited acetone and menthol cooling evoked responses, demonstrating that this inhibitory mechanism is not mediated by activation of GalR2. We then used the partial saphenous nerve ligation injury model of neuropathic pain (PSNI) and the complete Freund’s adjuvant model of inflammation in the rat and demonstrated that close intra-arterial infusion of galanin, but not Gal2-11, reduced cooling evoked nociceptor activity and cooling allodynia in both paradigms, whilst galanin and Gal2-11 both decreased mechanical activation thresholds. A previously described transgenic mouse line which inducibly over-expresses galanin (Gal-OE) after nerve injury was then used to investigate whether manipulating the levels of endogenous galanin also modulates cooling evoked nociceptive behaviours after PSNI. Acetone withdrawal behaviours in naive mice showed no differences between Gal-OE and wildtype (WT) mice. 7-days after PSNI Gal-OE mice demonstrated a significant reduction in the duration of acetone-induced nociceptive behaviours compared to WT mice.
These data identify a novel galaninergic mechanism that inhibits cooling evoked neuronal activity and nociceptive behaviours via a putative GalR1 mode of action that would also be consistent with a TRP channel-dependent mechanism.
PMCID: PMC3404965  PMID: 22672616
Galanin; Primary afferent; Cold; Neuropathic pain; Inflammatory pain
4.  Effect of Neocortical and Hippocampal Amyloid Deposition upon Galaninergic and Cholinergic Neurites in AβPPswe/PS1ΔE9 Mice 
Journal of Alzheimer's Disease  2011;25(3):491-504.
Amyloid-β (Aβ) plaques occur in close apposition to thickened or swollen cholinergic and galaninergic neurites within the neocortex and hippocampus in Alzheimer’s disease (AD). Despite this observation, the effect of Aβ deposition upon cholinergic and galaninergic dystrophic neurite formation remains unclear. Therefore, the purpose of this study was to evaluate the interaction between Aβ deposition within the neocortex and hippocampus upon cholinergic and galaninergic dystrophic neurite formation. Neocortical and hippocampal tissue harvested from 3- and 12-month-old amyloid-β protein precursor (AβPP)swe/PS1ΔE9 transgenic (tg) mice were dual-immunolabeled with antibodies against either choline acetyltransferace (ChAT) and Aβ (10D5) or galanin (Gal) and Aβ. Stereology was used to quantify amyloid plaques and cholinergic or galaninergic dystrophic neurites. Plaque number was assessed using the optical fractionator; plaque area was calculated with the Cavalieri estimator, and dystrophic neurite numbers and thickness were manually measured. Neither amyloid nor dystrophic neuritic profiles were seen in the brains of 3-month-old tg mice. In contrast, quantitative analysis revealed significantly more plaques in neocortex than hippocampus, with no difference in regional plaque size in 12-month-old tg mice. Significantly more cholinergic than galaninergic dystrophic neurites-per-plaque occurred in the neocortex and hippocampus. Additionally, cholinergic dystrophic neurites were thicker than galaninergic dystrophic neurites in both regions. These data suggest that amyloid plaque deposition has a greater impact upon cholinergic than galaninergic dystrophic neurite formation in the neocortex and hippocampus in AβPPswe/PS1ΔE9 tg mice. These data are also compatible with the hypothesis that galanin is neuroprotective and reduces dystrophic neurite formation in the face of amyloid toxicity.
PMCID: PMC3307130  PMID: 21471639
Alzheimer’s disease; cholinergic; galanin; amyloid; neocortex; hippocampus; neurites; plaques; transgenic mouse
5.  Peripheral Galanin Receptor 2 as a Target for the Modulation of Pain 
Pain Research and Treatment  2012;2012:545386.
The neuropeptide galanin is widely expressed in the nervous system and has an important role in nociception. It has been shown that galanin can facilitate and inhibit nociception in a dose-dependent manner, principally through the central nervous system, with enhanced antinociceptive actions after nerve injury. However, following nerve injury, expression of galanin within the peripheral nervous system is dramatically increased up to 120-fold. Despite this striking increase in the peripheral nervous system, few studies have investigated the role that galanin plays in modulating nociception at the primary afferent nociceptor. Here, we summarise the recent work supporting the role of peripherally expressed galanin with particular reference to the dual actions of the galanin receptor 2 in neuropathic pain highlighting this as a potential target analgesic.
PMCID: PMC3270467  PMID: 22315681
6.  Axotomy-Induced miR-21 Promotes Axon Growth in Adult Dorsal Root Ganglion Neurons 
PLoS ONE  2011;6(8):e23423.
Following injury, dorsal root ganglion (DRG) neurons undergo transcriptional changes so as to adopt phenotypic changes that promote cell survival and axonal regeneration. Here we used a microarray approach to profile changes in a population of small noncoding RNAs known as microRNAs (miRNAs) in the L4 and L5 DRG following sciatic nerve transection. Results showed that 20 miRNA transcripts displayed a significant change in expression levels, with 8 miRNAs transcripts being altered by more than 1.5-fold. Using quantitative reverse transcription PCR, we demonstrated that one of these miRNAs, miR-21, was upregulated by 7-fold in the DRG at 7 days post-axotomy. In dissociated adult rat DRG neurons lentiviral vector-mediated overexpression of miR-21 promoted neurite outgrowth on a reduced laminin substrate. miR-21 directly downregulated expression of Sprouty2 protein, as confirmed by Western blot analysis and 3′ untranslated region (UTR) luciferase assays. Our data show that miR-21 is an axotomy-induced miRNA that enhances axon growth, and suggest that miRNAs are important players in regulating growth pathways following peripheral nerve injury.
PMCID: PMC3154476  PMID: 21853131
7.  Endogenous Galanin Protects Mouse Hippocampal Neurons Against Amyloid Toxicity in vitro via Activation of Galanin Receptor-2 
Expression of the neuropeptide galanin is known to be upregulated in the brain of patients with Alzheimer’s disease (AD). We and others have shown that galanin plays a neuroprotective role in a number of excitotoxic injury paradigms, mediated by activation of the second galanin receptor subtype (GAL2). In the present study, we investigated whether galanin/GAL2 plays a similar protective role against amyloid-β(Aβ) toxicity. Here we report that galanin or the GAL2/3-specific peptide agonist Gal2-11, both equally protect primary dispersed mouse wildtype (WT) neonatal hippocampal neurons from 250 nM Aβ1–42 toxicity in a dose dependent manner. The amount of Aβ1–42 induced cell death was significantly greater in mice with loss-of-function mutations in galanin (Gal-KO) or GAL2 (GAL2-MUT) compared to strain-matched WT controls. Conversely, cell death was significantly reduced in galanin over-expressing (Gal-OE) transgenic mice compared to strain-matched WT controls. Exogenous galanin or Gal2-11 rescued the deficits in the Gal-KO but not the GAL2-MUT cultures, confirming that the protective effects of endogenous or exogenous galanin are mediated by activation of GAL2. Despite the high levels of endogenous galanin in the Gal-OE cultures, the addition of exogenous 100 nM or 50 nM galanin or 100 nM Gal2-11 further significantly reduced cell death, implying that GAL2-mediated neuroprotection is not at maximum in the Gal-OE mice. These data further support the hypothesis that galanin over-expression in AD is a neuroprotective response and imply that the development of a drug-like GAL2 agonist might reduce the progression of symptoms in patients with AD.
PMCID: PMC3145121  PMID: 21471641
Alzheimer’s disease; amyloid toxicity; galanin; GAL2; neuroprotection; transgenic models
8.  The expression of ELK transcription factors in adult DRG: novel isoforms, antisense transcripts and upregulation by nerve damage 
ELK transcription factors are expressed in brain, but it is unknown whether they are expressed in the peripheral nervous system. We show by RT-PCR that the previously described Elk1, Elk3/Elk3b/Elk3c and Elk4 mRNAs are expressed in adult dorsal root ganglia (DRG), together with the novel alternatively spliced isoforms Elk1b, Elk3d and Elk4c/Elk4d/Elk4e. These isoforms are also expressed in brain, heart, kidney and testis. In contrast to Elk3 protein, the novel Elk3d isoform is cytoplasmic, fails to bind ETS binding sites and yet can activate transcription by an indirect mechanism. The Elk3 and Elk4 genes are overlapped by co-expressed Pctk2 and Mfsd4 genes, respectively, with the potential formation of Elk3/Pctaire2 and Elk4/Mfsd4 sense-antisense mRNA heteroduplexes. After peripheral nerve injury the Elk3 mRNA isoforms are each upregulated ~2.3-fold in DRG (P<0.005), whereas the natural antisense Pctaire2 isoforms show only a small increase (21%, P<0.01) and Elk1 and Elk4 mRNAs are unchanged.
PMCID: PMC2862884  PMID: 20304071
Elk; Transcription factor; Dorsal root ganglia; Alternative splicing; Antisense mRNA; Axotomy
9.  Activation of the galanin receptor 2 in the periphery reverses nerve injury-induced allodynia 
Molecular Pain  2011;7:26.
Galanin is expressed at low levels in the intact sensory neurons of the dorsal root ganglia with a dramatic increase after peripheral nerve injury. The neuropeptide is also expressed in primary afferent terminals in the dorsal horn, spinal inter-neurons and in a number of brain regions known to modulate nociception. Intrathecal administration of galanin modulates sensory responses in a dose-dependent manner with inhibition at high doses. To date it is unclear which of the galanin receptors mediates the anti-nociceptive effects of the neuropeptide and whether their actions are peripherally and/or centrally mediated. In the present study we investigated the effects of direct administration into the receptive field of galanin and the galanin receptor-2/3-agonist Gal2-11 on nociceptive primary afferent mechanical responses in intact rats and mice and in the partial saphenous nerve injury (PSNI) model of neuropathic pain.
Exogenous galanin altered the responses of mechano-nociceptive C-fibre afferents in a dose-dependent manner in both naive and nerve injured animals, with low concentrations facilitating and high concentrations markedly inhibiting mechano-nociceptor activity. Further, use of the galanin fragment Gal2-11 confirmed that the effects of galanin were mediated by activation of galanin receptor-2 (GalR2). The inhibitory effects of peripheral GalR2 activation were further supported by our demonstration that after PSNI, mechano-sensitive nociceptors in galanin over-expressing transgenic mice had significantly higher thresholds than in wild type animals, associated with a marked reduction in spontaneous neuronal firing and C-fibre barrage into the spinal cord.
These findings are consistent with the hypothesis that the high level of endogenous galanin in injured primary afferents activates peripheral GalR2, which leads to an increase in C-fibre mechanical activation thresholds and a marked reduction in evoked and ongoing nociceptive responses.
PMCID: PMC3101129  PMID: 21496293
10.  Characterisation of the nociceptive phenotype of suppressible galanin overexpressing transgenic mice 
Molecular Pain  2010;6:67.
The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems and is involved in many diverse biological functions. There is a substantial data set that demonstrates galanin is upregulated after injury in the DRG, spinal cord and in many brain regions where it plays a predominantly antinociceptive role in addition to being neuroprotective and pro-regenerative. To further characterise the role of galanin following nerve injury, a novel transgenic line was created using the binary transgenic tet-off system, to overexpress galanin in galaninergic tissue in a suppressible manner. The double transgenic mice express significantly more galanin in the DRG one week after sciatic nerve section (axotomy) compared to WT mice and this overexpression is suppressible upon administration of doxycycline. Phenotypic analysis revealed markedly attenuated allodynia when galanin is overexpressed and an increase in allodynia following galanin suppression. This novel transgenic line demonstrates that whether galanin expression is increased at the time of nerve injury or only after allodynia is established, the neuropeptide is able to reduce neuropathic pain behaviour. These new findings imply that administration of a galanin agonist to patients with established allodynia would be an effective treatment for neuropathic pain.
PMCID: PMC2978139  PMID: 20964829
11.  Intact cutaneous C fibre afferent properties in mechanical and cold neuropathic allodynia 
European Journal of Pain (London, England)  2010;14(6):565.e1-565.e10.
Patients with neuropathy, report changes in sensory perception, particularly mechanical and thermal allodynia, and spontaneous pain. Similar sensory changes are seen in experimental neuropathies, in which alteration in primary afferent properties can also be determined. The neural correlate of spontaneous pain is ongoing activity in sensory afferents. Mechanical and heat allodynia are thought to result from lowered activation thresholds in primary afferent and/or central neurones, but the mechanisms underlying cold allodynia are very poorly understood.
We investigated nociceptive behaviours and the properties of C and A fibre intact afferents running adjacent to damaged afferents following a partial ligation injury of the saphenous nerve (PSNI). Animals developed mechanical and cold allodynia by 3 days after PSNI. Intact mechanosensitive C fibre afferents developed ongoing activity, and had slower conduction velocities 3 and 7 days following nerve injury, with no change in mechanical threshold. There was a large increase (∼46-fold) in calculated afferent input 3 days after nerve injury, as a result of the ongoing activity in these fibres. Mechano-cooling-sensitive C fibre afferents showed both enhanced cooling-evoked firing, and increased ongoing activity. The afferent barrage associated with mechano-cooling-sensitive afferents was increased 26-fold 7 days after nerve injury. We observed no differences in the properties of intact A fibre mechanosensitive afferents.
These studies demonstrate for the first time that the altered nociception seen after PSNI is associated with ongoing activity and enhanced cooling-evoked activity in intact C fibre afferents in the saphenous nerve, with no concurrent alteration in A fibre afferents.
PMCID: PMC2895510  PMID: 19942464
Neuropathic pain; Ongoing activity; Primary afferent; C fibre; A fibre
12.  Galanin knockout mice show disturbances in ethanol consumption and expression of hypothalamic peptides that stimulate ethanol intake 
There is growing evidence suggesting that hypothalamic galanin (GAL), which is known to stimulate intake of a fat-rich diet, has a role in promoting the consumption of ethanol. The present study further examined this possibility in GAL knockout (GALKO) mice.
Two groups of female and male GALKO mice, compared to wild-type (WT) controls, were trained to voluntarily drink increasing concentrations of ethanol, while maintained on lab chow and water. They were examined in terms of their daily ethanol intake and preference, acute consumption of a high-fat diet, preference for flavored solutions, and expression of different peptides shown to stimulate ethanol intake.
In the GALKO mice compared to WT, the results revealed: 1) a 35-45% decrease in ethanol intake and preference, which was evident only at the highest (15%) ethanol concentration, was stronger in female than in male mice, and was seen with comparisons to littermate as well as non-littermate WT mice; 2) a 48% decrease in acute intake of a fat-rich diet, again stronger in female than male mice; 3) no difference in consumption of sucrose or quinine solutions in preference tests; 4) a total loss of GAL mRNA in the hypothalamic paraventricular nucleus (PVN) of female and male mice; and 5) a gender-specific change in mRNA levels of peptides in the perifornical lateral hypothalamus (PFLH), orexin and melanin-concentrating hormone, which are known to stimulate ethanol and food intake and were markedly decreased in females while increased in males
These results provide strong support for a physiological role of PVN GAL in stimulating the consumption of ethanol, as well as a fat-rich diet. Ablation of the GAL gene produced a behavioral phenotype, particularly in females, which may reflect the functional relationship of galanin to ovarian steroids. It also altered the peptides in the PFLH, with their reduced expression contributing to the larger behavioral effects observed in females and their increased expression attenuating these effects in males.
PMCID: PMC2807920  PMID: 19860804
Ethanol; Hypothalamus; Galanin; Orexin; Dietary fat
13.  Intra-neural administration of fractalkine attenuates neuropathic pain-related behaviour 
Journal of neurochemistry  2008;106(2):640-649.
There is increasing evidence that a number of cytokines and their receptors are involved in the processes that lead to the development and maintenance of neuropathic pain states. Here we demonstrate that levels of CX3CR1 (the receptor for the chemokine fractalkine) mRNA in lumbar dorsal root ganglia (DRG) increase 5.8-fold 7 days after sciatic nerve axotomy, and 1.7- and 2.9-fold, 3 and 7 days respectively, after the spared nerve injury (SNI) model of neuropathic pain. In contrast, no significant change in the levels of fractalkine mRNA is apparent in the DRG after axotomy or SNI. The increase in CX3CR1 mRNA is paralleled by a 3.9- and 2.1-fold increase in the number of CX3CR1-positive macrophages in the DRG 7 days after axotomy and SNI, respectively. Expression of CX3CR1 in macrophages is also markedly increased in the sciatic nerve proximal to site of injury, by 25.7-fold after axotomy and 16.2-fold after SNI, 7 days after injury. Intra-neural injection into the sciatic nerve of 400 ng or 100 ng of fractalkine in adult 129OlaHsd mice significantly delayed the development of allodynia for 3 days following SNI. Further, CX3CR1 knockout (KO) mice display an increase in allodynia for three weeks after SNI compared to strain-matched Balb/c controls. Taken together, these results suggest an anti-allodynic role for fractalkine and its receptor in the mouse.
PMCID: PMC2726982  PMID: 18410510
CX3CL1; CX3CR1; dorsal root ganglia; fractalkine; nerve injury; neuropathic pain
14.  Characterization of an Enhancer Region of the Galanin Gene That Directs Expression to the Dorsal Root Ganglion and Confers Responsiveness to Axotomy 
Galanin expression markedly increases in the dorsal root ganglion (DRG) after sciatic nerve axotomy and modulates pain behavior and regeneration of sensory neurons. Here, we describe transgenic mice expressing constructs with varying amounts of sequence upstream of the murine galanin gene marked by LacZ. The 20 kb region upstream of the galanin gene recapitulates the endogenous expression pattern of galanin in the embryonic and adult intact DRG and after axotomy. In contrast, 1.9 kb failed to drive LacZ expression in the intact DRG or after axotomy. However, the addition of an additional 2.7 kb of 5′ flanking DNA (4.6 kb construct) restored the expression in the embryonic DRG and in the adult after axotomy. Sequence analysis of this 2.7 kb region revealed unique 18 and 23 bp regions containing overlapping putative Ets-, Stat-, and Smad-binding sites, and adjacent putative Stat- and Smad-binding sites, respectively. Deletion of the 18 and 23 bp regions from the 4.6 kb construct abolished the upregulation of LacZ expression in the DRG after axotomy but did not affect expression in the embryonic or intact adult DRG. Also, a bioinformatic analysis of the upstream regions of a number of other axotomy-responsive genes demonstrated that the close proximity of putative Ets-, Stat-, and Smad-binding sites appears to be a common motif in injury-induced upregulation in gene expression.
PMCID: PMC2726636  PMID: 17567818
galanin; DRG; Ets; Stat; Smad; axotomy
15.  Novel Isoforms of the Sodium Channels Nav1.8 and Nav1.5 Are Produced by a Conserved Mechanism in Mouse and Rat* 
The Journal of biological chemistry  2004;279(23):24826-24833.
The voltage-gated sodium channel Nav1.8 is only expressed in subsets of neurons in dorsal root ganglia (DRG) and trigeminal and nodose ganglia. We have isolated mouse partial length Nav1.8 cDNA clones spanning the exon 17 sequence, which have 17 nucleotide substitutions and 12 predicted amino acid differences from the published sequence. The absence of a mutually exclusive alternative exon 17 was confirmed by sequencing 4.1 kilobases of genomic DNA spanning exons 16–18 of Scn10a. A novel cDNA isoform was identified, designated Nav1.8c, which results from alternative 3′-splice site selection at a CAG/CAG motif to exclude the codon for glutamine 1031 within the interdomain cytoplasmic loop IDII/III. The ratio of Nav1.8c (CAG-skipped) to Nav1.8 (CAG-inclusive) mRNA in mouse is ~2:1 in adult DRG, trigeminal ganglion, and neonatal DRG. A Nav1.8c isoform also occurs in rat DRG, but is less common. Of the two other tetrodotoxin-resistant channels, no analogous alternative splicing of mouse Nav1.9 was detected, whereas rare alternative splicing of Nav1.5 at a CAG/CAG motif resulted in the introduction of a CAG trinucleotide. This isoform, designated Nav1.5c, is conserved in rat and encodes an additional glutamine residue that disrupts a putative CK2 phosphorylation site. In summary, novel isoforms of Nav1.8 and Nav1.5 are each generated by alternative splicing at CAG/CAG motifs, which result in the absence or presence of predicted glutamine residues within the interdomain cytoplasmic loop IDII/III. Mutations of sodium channels within this cytoplasmic loop have previously been demonstrated to alter electrophysiological properties and cause cardiac arrhythmias and epilepsy.
PMCID: PMC2726572  PMID: 15047701
16.  The sodium channel Nav1.5a is the predominant isoform expressed in adult mouse dorsal root ganglia and exhibits distinct inactivation properties from the full-length Nav1.5 channel 
Nav1.5 is the principal voltage-gated sodium channel expressed in heart, and is also expressed at lower abundance in embryonic dorsal root ganglia (DRG) with little or no expression reported postnatally. We report here the expression of Nav1.5 mRNA isoforms in adult mouse and rat DRG. The major isoform of mouse DRG is Nav1.5a, which encodes a protein with an IDII/III cytoplasmic loop reduced by 53 amino acids. Western blot analysis of adult mouse DRG membrane proteins confirmed the expression of Nav1.5 protein. The Na+ current produced by the Nav1.5a isoform has a voltage-dependent inactivation significantly shifted to more negative potentials (by ~5 mV) compared to the full-length Nav1.5 when expressed in the DRG neuroblastoma cell line ND7/23. These results imply that the alternatively spliced exon 18 of Nav1.5 plays a role in channel inactivation and that Nav1.5a is likely to make a significant contribution to adult DRG neuronal function.
PMCID: PMC2726334  PMID: 17433712
17.  Mice deficient for galanin receptor 2 have decreased neurite outgrowth from adult sensory neurons and impaired pain-like behaviour 
Journal of neurochemistry  2006;99(3):1000-1010.
Expression of the neuropeptide galanin is markedly up-regulated within the adult dorsal root ganglia (DRG) following peripheral nerve injury. We have previously demonstrated that galanin knockout (Gal-KO) mice have a developmental loss of a subset of DRG neurons. Galanin also plays a trophic role in the adult animal, and the rate of peripheral nerve regeneration and neurite outgrowth is reduced in adult Gal-KO mice. Here we describe the characterization of mice with an absence of GalR2 gene transcription (GalR2-MUT) and demonstrate that they have a 15% decrease in the number of calcitonin generelated peptide (CGRP) expressing neuronal profiles in the adult DRG, associated with marked deficits in neuropathic and inflammatory pain behaviours. Adult GalR2-MUT animals also have a one third reduction in neurite outgrowth from cultured DRG neurons that cannot be rescued by either galanin or a high-affinity GalR2/3 agonist. Galanin activates extracellular signal-regulated kinase (ERK) and Akt in adult wild-type (WT) mouse DRG. Intact adult DRG from GalR2-MUT animals have lower levels of pERK and higher levels of pAkt than are found in WT controls. These data suggest that a lack of GalR2 activation in Gal-KO and GalR2-MUT animals is responsible for the observed developmental deficits in the DRG, and the decrease in neurite outgrowth in the adult.
PMCID: PMC2725756  PMID: 17076662
dorsal root ganglia; galanin; GalR2; neurite outgrowth; pain; signalling
18.  Osteopontin expression and function within the dorsal root ganglion 
Neuroreport  2007;18(2):153-157.
Osteopontin expression has previously been demonstrated in the adult rat dorsal root ganglion, although its function remains unclear. Here, we demonstrate, using real-time reverse transcription-polymerase (RT-PCR) chain reaction, that osteopontin mRNA expression is increased 1 and 3 weeks following sciatic nerve section (axotomy). Further, immunohistochemical staining suggests that this increase is restricted to neurons already expressing the protein. Osteopontin knock-out animals have significantly increased mechanosensory thresholds in the intact adult compared with the wild-type controls; however no differences in allodynia are noted between genotypes using a model of neuropathic pain. Lastly, exogenous recombinant osteopontin has no effect on neurite outgrowth from adult wild-type sensory neurons, nor were differences in neurite outgrowth observed in osteopontin knock-out animals compared with wild-type controls.
PMCID: PMC2725313  PMID: 17301681
dorsal root ganglia; nerve injury; neuropathic pain; neurite outgrowth; osteopontin
19.  Activation of the galanin receptor 2 (GalR2) protects the hippocampus from neuronal damage 
Journal of neurochemistry  2007;100(3):780-789.
Expression of the neuropeptide galanin is up-regulated in many brain regions following nerve injury and in the basal forebrain of patients with Alzheimer’s disease. We have previously demonstrated that galanin modulates hippocampal neuronal survival, although it was unclear which receptor subtype(s) mediates this effect. Here we report that the protective role played by galanin in hippocampal cultures is abolished in animals carrying a loss-of-function mutation in the second galanin receptor subtype (GalR2-MUT). Exogenous galanin stimulates the phosphorylation of the serine/threonine kinase Akt and extracellular signal-regulated kinase (ERK) in wild-type (WT) cultures by 435 ± 5% and 278 ± 2%, respectively. The glutamate-induced activation of Akt was abolished in cultures from galanin knockout animals, and was markedly attenuated in GalR2-MUT animals, compared with WT controls. In contrast, similar levels of glutamate-induced ERK activation were observed in both loss-of-function mutants, but were further increased in galanin over-expressing animals. Using specific inhibitors of either ERK or Akt confirms that a GalR2-dependent modulation in the activation of the Akt and ERK signalling pathways contributes to the protective effects of galanin. These findings imply that the rise in endogenous galanin observed either after brain injury or in various disease states is an adaptive response that reduces apoptosis by the activation of GalR2, and hence Akt and ERK.
PMCID: PMC2705497  PMID: 17263796
Akt; extracellular signal-regulated kinase; galanin; galanin receptor 2; hippocampus; neuroprotection
20.  Galanin protects against behavioral and neurochemical correlates of opiate reward 
The mechanisms underlying responses to drugs of abuse have been widely investigated; however, less is known about pathways normally protective against the development of drug reinforcement. These pathways are also important since they may regulate individual differences in vulnerability to addiction. The neuropeptide galanin and its binding sites are expressed in brain areas important for drug reward. Previous studies have shown that centrally infused galanin attenuates morphine place preference and peripheral injection of galnon, a galanin agonist, decreases opiate withdrawal signs. The current studies in galanin knockout (GKO) mice examined the hypothesis that galanin is an endogenous negative regulator of opiate reward and identified downstream signaling pathways regulated by galanin. We show that GKO mice demonstrate increased locomotor activation following morphine administration, which is inhibited by acute administration of galnon. GKO mice also show enhanced morphine place preference, supporting the idea that galanin normally antagonizes opiate reward. In addition, morphine-induced ERK1/2 phosphorylation was increased in the VTA of both WT and GKO mice, but only the GKO mice showed increases in ERK1/2 and CREB phosphorylation in the amygdala or nucleus accumbens. Furthermore, a single systemic injection of galnon in GKO mice was sufficient to reverse some of the biochemical changes brought about by morphine administration. These data suggest that galanin normally attenuates behavioral and neurochemical effects of opiates; thus, galanin agonists may represent a new class of therapeutic targets for opiate addiction.
PMCID: PMC2504505  PMID: 17957220
galanin; addiction; morphine; ERK; place preference; CREB
21.  GalR1, but not GalR2 or GalR3, levels are regulated by galanin signaling in the locus coeruleus through a cyclic AMP-dependent mechanism 
Journal of neurochemistry  2005;93(5):1168-1176.
The galanin receptors GalR1, GalR2 and GalR3 are widely expressed throughout the mouse brain and are enriched in catecholaminergic nuclei. Here we show that GalR1 protein levels are regulated by neuronal activity and changes in cyclic AMP levels. GalR1, but not GalR2 or GalR3, is specifically upregulated in the LC-like Cath.a cell line in a cyclic AMP-dependent manner. GalR1 protein and mRNA levels are also upregulated in the LC of galanin knockout mice, whereas GalR2 and GalR3 are not. Lack of galanin-maintained cyclic AMP tone in the galanin knockout mouse appears to result in a loss of negative feedback resulting in increased levels of CREB phosphorylation and increased GalR1 expression. These findings suggest that changes in levels of GalR1 may play an important role in modulating signaling events and neuroplasticity underlying physiological functions of the LC.
** Abbreviations.
PMCID: PMC1352153  PMID: 15934937
negative feedback; norepinephrine; tyrosine hydroxylase; knockout mice
23.  Galanin stimulates neurite outgrowth from sensory neurons by inhibition of Cdc42 and Rho GTPases and activation of cofilin 
Journal of Neurochemistry  2013;127(2):199-208.
We and others have previously shown that the neuropeptide galanin modulates neurite outgrowth from adult sensory neurons via activation of the second galanin receptor; however, the intracellular signalling pathways that mediate this neuritogenic effect have yet to be elucidated. Here, we demonstrate that galanin decreases the activation state in adult sensory neurons and PC12 cells of Rho and Cdc42 GTPases, both known regulators of filopodial and growth cone motility. Consistent with this, activated levels of Rho and Cdc42 levels are increased in the dorsal root ganglion of adult galanin knockout animals compared with wildtype controls. Furthermore, galanin markedly increases the activation state of cofilin, a downstream effector of many of the small GTPases, in the cell bodies and growth cones of sensory neurons and in PC12 cells. We also demonstrate a reduction in the activation of cofilin, and alteration in growth cone motility, in cultured galanin knockout neurons compared with wildtype controls. These data provide the first evidence that galanin regulates the Rho family of GTPases and cofilin to stimulate growth cone dynamics and neurite outgrowth in sensory neurons. These findings have important therapeutic implications for the treatment of peripheral sensory neuropathies.
PMCID: PMC3935412  PMID: 23895321
Cdc42; cofilin; DRG; galanin; Rho

Results 1-23 (23)