PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  The Multiple Functions of T Stellate/Multipolar/Chopper Cells in the Ventral Cochlear Nucleus 
Hearing research  2010;276(1-2):61-69.
Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory pathways through the brain stem. T Stellate cells are sharply tuned; as a population they encode the spectrum of sounds. In these neurons, phasic excitation from the auditory nerve is made more tonic by feed forward excitation, coactivation of inhibitory with excitatory inputs, relatively large excitatory currents through NMDA receptors, and relatively little synaptic depression. The mechanisms that make firing tonic also obscure the fine structure of sounds that is represented in the excitatory inputs from the auditory nerve and account for the characteristic chopping response patterns with which T stellate cells respond to tones. In contrast with other principal cells of the ventral cochlear nucleus (VCN), T stellate cells lack a low-voltage-activated potassium conductance and are therefore sensitive to small, steady, neuromodulating currents. The presence of cholinergic, serotonergic and noradrenergic receptors allows the excitability of these cells to be modulated by medial olivocochlear efferent neurons and by neuronal circuits associated with arousal. T Stellate cells deliver acoustic information to the ipsilateral dorsal cochlear nucleus (DCN), ventral nucleus of the trapezoid body (VNTB), periolivary regions around the lateral superior olivary nucleus (LSO), and to the contralateral ventral lemniscal nuclei (VNLL) and inferior colliculus (IC). It is likely that T stellate cells participate in feedback loops through both medial and lateral olivocochlear efferent neurons and they may be a source of ipsilateral excitation of the LSO.
doi:10.1016/j.heares.2010.10.018
PMCID: PMC3078527  PMID: 21056098
ventral cochlear nucleus; brainstem auditory pathways; ion channels; patch-clamp recording
2.  Neural Correlates of Fluid Reasoning in Children and Adults 
Fluid reasoning, or the capacity to think logically and solve novel problems, is central to the development of human cognition, but little is known about the underlying neural changes. During the acquisition of event-related fMRI data, children aged 6–13 (N = 16) and young adults (N = 17) performed a task in which they were asked to identify semantic relationships between drawings of common objects. On semantic problems, participants indicated which of five objects was most closely semantically related to a cued object. On analogy problems, participants solved a visual propositional analogy (e.g., shoe is to foot as glove is to…?) by indicating which of four objects would complete the problem; these problems required integration of two semantic relations, or relational integration. Our prior research on analogical reasoning in adults implicated left anterior ventrolateral prefrontal cortex (VLPFC) in the controlled retrieval of individual semantic relationships, and rostrolateral prefrontal cortex (RLPFC) in relational integration. In this study, age-related changes in the recruitment of VLPFC, temporal cortex, and other cortical regions were observed during the retrieval of individual semantic relations. In contrast, age-related changes in RLPFC function were observed during relational integration. Children aged 6–13 engage RLPFC too late in the analogy trials to influence their behavioral responses, suggesting that important changes in RLPFC function take place during adolescence.
doi:10.3389/neuro.09.008.2007
PMCID: PMC2525981  PMID: 18958222
development; cognition; brain; analogy; relational; functional magnetic resonance imaging; hierarchy; frontal

Results 1-2 (2)