PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
1.  Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta‐analysis 
Thorax  2007;62(11):944-949.
Background
Skeletal muscle dysfunction is a common feature in chronic obstructive pulmonary disease (COPD) which is associated with intrinsic muscular abnormalities. One of the most consistently reported alterations is a shift from fibre type I to II in the vastus lateralis of these patients. Surprisingly, the relationship between this shift and the severity and phenotype of COPD remains unclear. A study was conducted to determine whether vastus lateralis muscle fibre type proportions are associated with COPD disease severity and to provide reference values for the proportions of fibre types in the vastus lateralis in COPD.
Methods
A systematic review and a meta‐analysis were conducted in which muscle fibre type data and markers of disease severity were collected from the literature.
Results
The forced expiratory volume in 1 s (FEV1), the ratio of FEV1 to forced vital capacity (FVC) and body mass index were positively associated with the proportion of type I fibres in COPD. A proportion of 51% for vastus lateralis fibre type I and 13% for fibre type IIX were calculated from the combined data as normal values for patients with typical GOLD stage 3–4 COPD aged 60–70 years. Based on these reference values, a proportion of fibre type I <27% and of fibre type IIX >29% were defined as pathologically abnormal.
Conclusions
This review sheds new light on the relationship between skeletal muscle abnormalities and important hallmarks of the disease in severe COPD, and identifies absence of data in GOLD stages 1–2. This review also provides reference values on fibre type composition for diagnostic purposes in COPD.
doi:10.1136/thx.2007.078980
PMCID: PMC2117111  PMID: 17526675
2.  Cellular protein breakdown and systemic inflammation are unaffected by pulmonary rehabilitation in COPD 
Thorax  2006;62(2):109-114.
Background
Pulmonary rehabilitation can improve the functional capacity, but has a variable effect on the low fat‐free mass (FFM) in patients with chronic obstructive pulmonary disease.
Hypothesis
Pulmonary rehabilitation would not affect catabolic drives such as systemic inflammation and also protein breakdown.
Methods
Patients (n = 40) were studied at the start of an 8‐week in‐patient pulmonary rehabilitation programme, at the end of the programme and 4 weeks later. FFM and functional capacity (quadriceps strength, handgrip strength and peak workload) were assessed. Pseudouridine (PSU) urinary excretion (cellular protein breakdown) and inflammatory status were determined. Healthy participants had a single baseline assessment (n = 18).
Results
PSU, (IL)‐6 and soluble tumour necrosis factor (sTNF)α R75 were increased in patients compared with healthy participants, whereas FFM and functional capacity were reduced (all p<0.01). PSU was inversely related to both FFM and skeletal muscle function. FFM and functional parameters increased with rehabilitation, but PSU and inflammatory status were unaffected. The gain in FFM was lost 4 weeks after the completion of rehabilitation (p<0.01).
Conclusion
The anabolic effect of pulmonary rehabilitation improved FFM, but it did not reverse the increased protein breakdown or systemic inflammation. Thus, on cessation of pulmonary rehabilitation the FFM gains were lost owing to a loss of anabolic drive.
doi:10.1136/thx.2006.060368
PMCID: PMC2111241  PMID: 16928709
3.  Early body weight loss during concurrent chemo-radiotherapy for non-small cell lung cancer 
Background and purpose
Radiation-esophagitis and weight loss are frequently observed toxicities in patients treated with concurrent chemo-radiotherapy (CT-RT) for non-small cell lung cancer (NSCLC) and might be related. The purpose was to investigate whether weight loss already starts early after initiation of CT-RT and precedes radiation-esophagitis.
Materials and methods
In a retrospective cohort, weight and esophagitis grade ≥2 were assessed during the first weeks of (CT-)RT in patients treated with concurrent (n = 102) or sequential (n = 92) therapy. In a prospective validation study, data on body weight, esophagitis grade ≥2, nutritional intake and muscle strength were obtained before, during and following CT-RT.
Results
In the retrospective cohort, early weight loss was observed in concurrently treated patients (p = 0.002), independent of esophagitis ≥ grade 2. Early weight loss was also observed in the prospective cohort (p = 0.003) and was not accompanied by decreases in nutritional intake. In addition lower limb muscle strength rapidly declined (p = 0.042). In the later weeks of treatment, further body weight loss occurred (p < 0.001) despite increased nutritional supplementation and body weight was only partly recovered after 4 weeks post CT-RT (p = 0.003).
Conclusions
Weight loss during concurrent CT-RT for NSCLC starts early and prior to onset of esophagitis, requiring timely and intense nutritional rehabilitation.
Electronic supplementary material
The online version of this article (doi:10.1007/s13539-013-0127-5) contains supplementary material.
doi:10.1007/s13539-013-0127-5
PMCID: PMC4053563  PMID: 24452446
Weight loss; Chemotherapy; Concurrent; Esophagitis; Non-small cell lung cancer; Radiotherapy
4.  COgnitive-Pulmonary Disease 
BioMed Research International  2014;2014:697825.
Over the past few decades, chronic obstructive lung disease (COPD) has been considered a disease of the lungs, often caused by smoking. Nowadays, COPD is regarded as a systemic disease. Both physical effects and effects on brains, including impaired psychological and cognitive functioning, have been demonstrated. Patients with COPD may have cognitive impairment, either globally or in single cognitive domains, such as information processing, attention and concentration, memory, executive functioning, and self-control. Possible causes are hypoxemia, hypercapnia, exacerbations, and decreased physical activity. Cognitive impairment in these patients may be related to structural brain abnormalities, such as gray-matter pathologic changes and the loss of white matter integrity which can be induced by smoking. Cognitive impairment can have a negative impact on health and daily life and may be associated with widespread consequences for disease management programs. It is important to assess cognitive functioning in patients with COPD in order to optimize patient-oriented treatment and to reduce personal discomfort, hospital admissions, and mortality. This paper will summarize the current knowledge about cognitive impairment as extrapulmonary feature of COPD. Hereby, the impact of smoking on cognitive functioning and the impact of cognitive impairment on smoking behaviour will be examined.
doi:10.1155/2014/697825
PMCID: PMC3971492  PMID: 24738069
5.  The COgnitive-Pulmonary Disease (COgnitive-PD) study: protocol of a longitudinal observational comparative study on neuropsychological functioning of patients with COPD 
BMJ Open  2014;4(3):e004495.
Introduction
Intact cognitive functioning is necessary for patients with chronic obstructive pulmonary disease (COPD) to understand the value of healthy lifestyle guidelines, to make informed decisions and subsequently act on it. Nevertheless, brain abnormalities and cognitive impairment have been found in patients with COPD. To date, it remains unknown which cognitive domains are affected and what the possible consequences are of cognitive impairment. Therefore, objectives of the study described are to determine neuropsychological functioning in patients with COPD, and its influence on health status, daily functioning and pulmonary rehabilitation outcome. Furthermore, structural and functional brain abnormalities and the relationship with cognitive and daily functioning will be explored.
Methods and analysis
A longitudinal observational comparative study will be performed in 183 patients with COPD referred for pulmonary rehabilitation and in 90 healthy control participants. Demographic and clinical characteristics, activities of daily living and knowledge about COPD will be assessed. Baseline cognitive functioning will be compared between patients and controls using a detailed neuropsychological testing battery. An MRI substudy will be performed to compare brain abnormalities between 35 patients with COPD with cognitive impairment and 35 patients with COPD without cognitive impairment. Patients will be recruited between November 2013 and November 2015.
Ethics and dissemination
The study has been approved by the Medical Ethics Committee of the University Hospital Maastricht and Maastricht University (NL45127.068.13/METC 13-3-035) and is registered in the Dutch trial register. All participants will provide written informed consent and can withdraw from the study at any point in time. Assessment and home visit data material will be managed anonymously. The results obtained can be used to optimise patient-oriented treatment for cognitively impaired patients with COPD. The findings will be disseminated in international peer-reviewed journals and through research conferences.
doi:10.1136/bmjopen-2013-004495
PMCID: PMC3948451  PMID: 24589828
Respiratory Medicine (see Thoracic Medicine); Neuropathology
6.  Association of plasma sRAGE, but not esRAGE with lung function impairment in COPD 
Respiratory Research  2014;15(1):24.
Rationale
Plasma soluble Receptor for Advanced Glycation End Product (sRAGE) is considered as a biomarker in COPD. The contribution of endogenous sRAGE (esRAGE) to the pool of plasma sRAGE and the implication of both markers in COPD pathogenesis is however not clear yet. The aim of the current study was therefore to measure plasma levels of esRAGE comparative to total sRAGE in patients with COPD and a control group. Further, we established the relations of esRAGE and total sRAGE with disease specific characteristics such as lung function and DLCO, and with different circulating AGEs.
Methods
Plasma levels of esRAGE and sRAGE were measured in an 88 patients with COPD and in 55 healthy controls. FEV1 (%predicted) and FEV1/VC (%) were measured in both groups; DLCO (%predicted) was measured in patients only. In this study population we previously reported that the AGE Nϵ-(carboxymethyl) lysine (CML) was decreased, Nϵ-(carboxyethyl) lysine (CEL) increased and pentosidine was not different in plasma of COPD patients compared to controls.
Results
Plasma esRAGE (COPD: 533.9 ± 412.4, Controls: 848.7 ± 690.3 pg/ml; p = 0.000) was decreased in COPD compared to controls. No significant correlations were observed between plasma esRAGE levels and lung function parameters or plasma AGEs. A positive correlation was present between esRAGE and total sRAGE levels in the circulation. Confirming previous findings, total sRAGE (COPD: 512.6 ± 403.8, Controls: 1834 ± 804.2 pg/ml; p < 0.001) was lower in patients compared to controls and was positively correlated FEV1 (r = 0.235, p = 0.032), FEV1/VC (r = 0.218, p = 0.047), and DLCO (r = 0.308, p = 0.006). sRAGE furthermore did show a significant positive association with CML (r = 0.321, p = 0.003).
Conclusion
Although plasma esRAGE is decreased in COPD patients compared to controls, only total sRAGE showed a significant and independent association with FEV1, FEV1/VC and DLCO, indicating that total sRAGE but not esRAGE may serve as marker of COPD disease state and severity.
doi:10.1186/1465-9921-15-24
PMCID: PMC3944004  PMID: 24564838
sRAGE; esRAGE; FEV1; COPD
8.  A randomised controlled trial on the efficacy of advance care planning on the quality of end-of-life care and communication in patients with COPD: the research protocol 
BMJ Open  2014;4(1):e004465.
Introduction
Recent research shows that advance care planning (ACP) for patients with chronic obstructive pulmonary disease (COPD) is uncommon and poorly carried out. The aim of the present study was to explore whether and to what extent structured ACP by a trained nurse, in collaboration with the chest physician, can improve outcomes in Dutch patients with COPD and their family.
Methods and analysis
A multicentre cluster randomised controlled trial in patients with COPD who are recently discharged after an exacerbation has been designed. Patients will be recruited from three Dutch hospitals and will be assigned to an intervention or control group, depending on the randomisation of their chest physician. Patients will be assessed at baseline and after 6 and 12 months. The intervention group will receive a structured ACP session by a trained nurse. The primary outcomes are quality of communication about end-of-life care, symptoms of anxiety and depression, quality of end-of-life care and quality of dying. Secondary outcomes include concordance between patient's preferences for end-of-life care and received end-of-life care, and psychological distress in bereaved family members of deceased patients. Intervention and control groups will be compared using univariate analyses and clustered regression analysis.
Ethics and dissemination
Ethical approval was received from the Medical Ethical Committee of the Catharina Hospital Eindhoven, the Netherlands (NL42437.060.12). The current project provides recommendations for guidelines on palliative care in COPD and supports implementation of ACP in the regular clinical care.
Clinical trial registration number
NTR3940.
doi:10.1136/bmjopen-2013-004465
PMCID: PMC3902375  PMID: 24384905
Advance Care Planning; End-of-life Care; Palliative Care; COPD
9.  Metabolic and Structural Changes in Lower-Limb Skeletal Muscle Following Neuromuscular Electrical Stimulation: A Systematic Review 
PLoS ONE  2013;8(9):e69391.
Background
Transcutaneous neuromuscular electrical stimulation (NMES) can be applied as a complementary intervention to regular exercise training programs. A distinction can be made between high-frequency (HF) NMES and low-frequency (LF) NMES. In order to increase understanding of the mechanisms of functional improvements following NMES, the purpose of this study was to systematically review changes in enzyme activity, muscle fiber type composition and muscle fiber size in human lower-limb skeletal muscles following only NMES.
Methods
Trials were collected up to march 2012 and were identified by searching the Medline/PubMed, EMBASE, Cochrane Central Register of Controlled Trials, CINAHL and The Physical Therapy Evidence Database (PEDro) databases and reference lists. 18 trials were reviewed in detail: 8 trials studied changes in enzyme activities, 7 trials studied changes in muscle fiber type composition and 14 trials studied changes in muscle fiber size following NMES.
Results
The methodological quality generally was poor, and the heterogeneity in study design, study population, NMES features and outcome parameters prohibited the use of meta-analysis. Most of the LF-NMES studies reported significant increases in oxidative enzyme activity, while the results concerning changes in muscle fiber composition and muscle size were conflicting. HF-NMES significantly increased muscle size in 50% of the studies.
Conclusion
NMES seems to be a training modality resulting in changes in oxidative enzyme activity, skeletal muscle fiber type and skeletal muscle fiber size. However, considering the small sample sizes, the variance in study populations, the non-randomized controlled study designs, the variance in primary outcomes, and the large heterogeneity in NMES protocols, it is difficult to draw definitive conclusions about the effects of stimulation frequencies on muscular changes.
doi:10.1371/journal.pone.0069391
PMCID: PMC3760845  PMID: 24019860
10.  Silica induces NLRP3 inflammasome activation in human lung epithelial cells 
Background
In myeloid cells the inflammasome plays a crucial role in innate immune defenses against pathogen- and danger-associated patterns such as crystalline silica. Respirable mineral particles impinge upon the lung epithelium causing irreversible damage, sustained inflammation and silicosis. In this study we investigated lung epithelial cells as a target for silica-induced inflammasome activation.
Methods
A human bronchial epithelial cell line (BEAS-2B) and primary normal human bronchial epithelial cells (NHBE) were exposed to toxic but nonlethal doses of crystalline silica over time to perform functional characterization of NLRP3, caspase-1, IL-1β, bFGF and HMGB1. Quantitative RT-PCR, caspase-1 enzyme activity assay, Western blot techniques, cytokine-specific ELISA and fibroblast (MRC-5 cells) proliferation assays were performed.
Results
We were able to show transcriptional and translational upregulation of the components of the NLRP3 intracellular platform, as well as activation of caspase-1. NLRP3 activation led to maturation of pro-IL-1β to secreted IL-1β, and a significant increase in the unconventional release of the alarmins bFGF and HMGB1. Moreover, release of bFGF and HMGB1 was shown to be dependent on particle uptake. Small interfering RNA experiments using siNLRP3 revealed the pivotal role of the inflammasome in diminished release of pro-inflammatory cytokines, danger molecules and growth factors, and fibroblast proliferation.
Conclusion
Our novel data indicate the presence and functional activation of the NLRP3 inflammasome by crystalline silica in human lung epithelial cells, which prolongs an inflammatory signal and affects fibroblast proliferation, mediating a cadre of lung diseases.
doi:10.1186/1743-8977-10-3
PMCID: PMC3607900  PMID: 23402370
Silica; NLRP3 inflammasome; Caspase-1; IL-1β; HMGB1; bFGF
11.  Cigarette Smoke Targets Glutaredoxin 1, Increasing S-Glutathionylation and Epithelial Cell Death 
It is established that cigarette smoke (CS) causes irreversible oxidations in lung epithelial cells, and can lead to their death. However, its impact on reversible and physiologically relevant redox-dependent protein modifications remains to be investigated. Glutathione is an important antioxidant against inhaled reactive oxygen species as a direct scavenger, but it can also covalently bind protein thiols upon mild oxidative stress to protect them against irreversible oxidation. This posttranslational modification, known as S-glutathionylation, can be reversed under physiological conditions by the enzyme, glutaredoxin 1 (Grx1). The aim of this study was to investigate if CS modifies Grx1, and if this impacts on protein S-glutathionylation and epithelial cell death. Upon exposure of alveolar epithelial cells to CS extract (CSE), a decrease in Grx1 mRNA and protein expression was observed, in conjunction with decreased activity and increased protein S-glutathionylation. Using mass spectrometry, irreversible oxidation of recombinant Grx1 by CSE and acrolein was demonstrated, which was associated with attenuated enzyme activity. Furthermore, carbonylation of Grx1 in epithelial cells after exposure to CSE was shown. Overexpression of Grx1 attenuated CSE-induced increases in protein S-glutathionylation and increased survival. Conversely, primary tracheal epithelial cells of mice lacking Grx1 were more sensitive to CS-induced cell death, with corresponding increases in protein S-glutathionylation. These results show that CS can modulate Grx1, not only at the expression level, but can also directly modify Grx1 itself, decreasing its activity. These findings demonstrate a role for the Grx1/S-glutathionylation redox system in CS-induced lung epithelial cell death.
doi:10.1165/rcmb.2010-0249OC
PMCID: PMC3262689  PMID: 21454804
chronic obstructive pulmonary disease; cigarette smoke; cell death; glutaredoxin; protein S-glutathionylation
12.  Activation of the glutaredoxin-1 gene by Nuclear Factor kappa B enhances signaling 
Free radical biology & medicine  2011;51(6):1249-1257.
The transcription factor, Nuclear Factor kappa B (NF-κB) is a critical regulator of inflammation and immunity, and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyses deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice which express a doxycyclin-inducible constitutively active version of inhibitory kappa B kinase-beta (CA-IKKβ) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKβ also resulted in significant induction of Grx1. A 2kb region Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKβ, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression, and time-dependent increases in S-glutathionylation of IKKβ. Overexpression of Grx1 decreased S-glutathionylation of IKKβ, prolonged NF-κB activation, and increased levels of pro-inflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB, and suggests a feed forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation.
doi:10.1016/j.freeradbiomed.2011.06.025
PMCID: PMC3181077  PMID: 21762778
S-glutathionylation; Nuclear Factor kappa B; Glutaredoxin; Lung; Inhibitory kappa B kinase
13.  Effects of Body Mass Index on Task-Related Oxygen Uptake and Dyspnea during Activities of Daily Life in COPD 
PLoS ONE  2012;7(7):e41078.
Background
Patients with COPD use a higher proportion of their peak aerobic capacity during the performance of domestic activities of daily life (ADLs) compared to healthy peers, accompanied by a higher degree of task-related symptoms. To date, the influence of body mass index (BMI) on the task-related metabolic demands remains unknown in patients with COPD. Therefore, the aim of our study was to determine the effects of BMI on metabolic load during the performance of 5 consecutive domestic ADLs in patients with COPD.
Methodology
Ninety-four COPD patients and 20 healhty peers performed 5 consecutive, self-paced domestic ADLs putting on socks, shoes and vest; folding 8 towels; putting away groceries; washing up 4 dishes, cups and saucers; and sweeping the floor for 4 min. Task-related oxygen uptake and ventilation were assessed using a mobile oxycon, while Borg scores were used to assess task-related dyspnea and fatigue.
Principal Findings
1. Relative task-related oxygen uptake after the performance of domestic ADLs was increased in patients with COPD compared to healthy elderly, whereas absolute oxygen uptake is similar between groups; 2. Relative oxygen uptake and oxygen uptake per kilogram fat-free mass were comparable between BMI groups; and 3. Borg symptom scores for dyspnea en fatigue were comparable between BMI groups.
Conclusion
Patients with COPD in different BMI groups perform self-paced domestic ADLs at the same relative metabolic load, accompanied by comparable Borg symptom scores for dyspnea and fatigue.
doi:10.1371/journal.pone.0041078
PMCID: PMC3398871  PMID: 22815922
14.  Altered Cigarette Smoke-Induced Lung Inflammation Due to Ablation of Grx1 
PLoS ONE  2012;7(6):e38984.
Glutaredoxins (Grx) are redox enzymes that remove glutathione bound to protein thiols, know as S-glutathionylation (PSSG). PSSG is a reservoir of GSH and can affect the function of proteins. It inhibits the NF-κB pathway and LPS aspiration in Grx1 KO mice with decreased inflammatory cytokine levels. In this study we investigated whether absence of Grx1 similarly repressed cigarette smoke-induced inflammation in an exposure model in mice. Cigarette smoke exposure for four weeks decreased lung PSSG levels, but increased PSSG in lavaged cells and lavage fluid (BALF). Grx1 KO mice had increased levels of PSSG in lung tissue, BALF and BAL cells in response to smoke compared to wt mice. Importantly, levels of multiple inflammatory mediators in the BALF were decreased in Grx1 KO animals following cigarette smoke exposure compared to wt mice, as were levels of neutrophils, dendritic cells and lymphocytes. On the other hand, macrophage numbers were higher in Grx1 KO mice in response to smoke. Although cigarette smoke in vivo caused inverse effects in inflammatory and resident cells with respect to PSSG, primary macrophages and epithelial cells cultured from Grx1 KO mice both produced less KC compared to cells isolated from WT mice after smoke extract exposure. In this manuscript, we provide evidence that Grx1 has an important role in regulating cigarette smoke-induced lung inflammation which seems to diverge from its effects on total PSSG. Secondly, these data expose the differential effect of cigarette smoke on PSSG in inflammatory versus resident lung cells.
doi:10.1371/journal.pone.0038984
PMCID: PMC3377591  PMID: 22723915
15.  Differences in Walking Pattern during 6-Min Walk Test between Patients with COPD and Healthy Subjects 
PLoS ONE  2012;7(5):e37329.
Background
To date, detailed analyses of walking patterns using accelerometers during the 6-min walk test (6MWT) have not been performed in patients with chronic obstructive pulmonary disease (COPD). Therefore, it remains unclear whether and to what extent COPD patients have an altered walking pattern during the 6MWT compared to healthy elderly subjects.
Methodology/Principal Findings
79 COPD patients and 24 healthy elderly subjects performed the 6MWT wearing an accelerometer attached to the trunk. The accelerometer features (walking intensity, cadence, and walking variability) and subject characteristics were assessed and compared between groups. Moreover, associations were sought with 6-min walk distance (6MWD) using multiple ordinary least squares (OLS) regression models. COPD patients walked with a significantly lower walking intensity, lower cadence and increased walking variability compared to healthy subjects. Walking intensity and height were the only two significant determinants of 6MWD in healthy subjects, explaining 85% of the variance in 6MWD. In COPD patients also age, cadence, walking variability measures and their interactions were included were significant determinants of 6MWD (total variance in 6MWD explained: 88%).
Conclusions/Significance
COPD patients have an altered walking pattern during 6MWT compared to healthy subjects. These differences in walking pattern partially explain the lower 6MWD in patients with COPD.
doi:10.1371/journal.pone.0037329
PMCID: PMC3356256  PMID: 22624017
18.  Catalase Overexpression Fails to Attenuate Allergic Airways Disease in the Mouse1 
Oxidative stress is a hallmark of asthma, and increased levels of oxidants are considered markers of the inflammatory process. Most studies to date addressing the role of oxidants in the etiology of asthma were based on the therapeutic administration of low m.w. antioxidants or antioxidant mimetic compounds. To directly address the function of endogenous hydrogen peroxide in the pathophysiology of allergic airway disease, we comparatively evaluated mice systemically overexpressing catalase, a major antioxidant enzyme that detoxifies hydrogen peroxide, and C57BL/6 strain matched controls in the OVA model of allergic airways disease. Catalase transgenic mice had 8-fold increases in catalase activity in lung tissue, and had lowered DCF oxidation in tracheal epithelial cells, compared with C57BL/6 controls. Despite these differences, both strains showed similar increases in OVA-specific IgE, IgG1, and IgG2a levels, comparable airway and tissue inflammation, and identical increases in procollagen 1 mRNA expression, following sensitization and challenge with OVA. Unexpectedly, mRNA expression of MUC5AC and CLCA3 genes were enhanced in catalase transgenic mice, compared with C57BL/6 mice subjected to Ag. Furthermore, when compared with control mice, catalase overexpression increased airway hyperresponsiveness to methacholine both in naive mice as well as in response to Ag. In contrast to the prevailing notion that hydrogen peroxide is positively associated with the etiology of allergic airways disease, the current findings suggest that endogenous hydrogen peroxide serves a role in suppressing both mucus production and airway hyperresponsiveness.
PMCID: PMC2830272  PMID: 17339480
19.  Whole-Body versus Local DXA-Scan for the Diagnosis of Osteoporosis in COPD Patients 
Journal of Osteoporosis  2010;2010:640878.
Background. Osteoporosis is an extrapulmonary effect of chronic obstructive pulmonary disease (COPD). Diagnosis of osteoporosis is based on BMD measured by DXA-scan. The best location for BMD measurement in COPD has not been determined. Aim of this study was to assess whole-body BMD and BMD of the hip and lumbar spine (local DXA) in COPD patients and compare the prevalence of osteoporosis at these locations. Methods. Whole body as well as local DXA-scan were made in 168 COPD patients entering pulmonary rehabilitation. Patient-relevant characteristics were assessed. Prevalence of osteoporosis was determined. Characteristics of patients without osteoporosis were compared to patients with osteoporosis on local DXA. Results. A higher prevalence of osteoporosis was found using local DXA compared to whole-body DXA (39% versus 21%). One quarter of patients without osteoporosis on whole body-DXA did have osteoporosis on local DXA. Significant differences in patient characteristics between patients without osteoporosis based on both DXA measurements and patients with osteoporosis based on local DXA only were found. Conclusions. DXA of the hip and lumbar spine should be made to assess bone mineral density in COPD patients. The lowest T-score of these locations should be used to diagnose osteoporosis.
doi:10.4061/2010/640878
PMCID: PMC2957150  PMID: 20976078
20.  Modulation of Glutaredoxin-1 Expression in a Mouse Model of Allergic Airway Disease 
Glutaredoxins (GRX) are antioxidant enzymes that preferentially catalyze the reduction of protein-glutathione mixed disulfides. The formation of mixed disulfides with GSH is known as S-glutathionylation, a post-translational modification that is emerging as an important mode of redox signaling. Since asthma is a disease that is associated with increased oxidative stress and altered antioxidant defenses, we investigated the expression of GRX in a murine model of allergic airway disease. Sensitization and challenge of C57BL/6 mice with ovalbumin resulted in increased expression of GRX1 mRNA, as well as increased amounts of GRX1 protein and total GRX activity in the lung. Because GRX1 expression is prominent in bronchial epithelium, we isolated primary epithelial cells from mouse trachea to investigate the presence of GRX. Primary tracheal epithelial cells were found to express both GRX1 and 2 mRNA and detectable GRX activity. Treatment with IFN-γ increased the expression of GRX1 and overall GRX activity, resulting in attenuation of protein S-glutathionylation. In contrast, TGF-β1 caused decreased GRX1 expression and overall GRX activity, leading to markedly enhanced protein S-glutathionylation. GRX1 joins the cadre of antioxidant defenses known to be modulated during allergic airway inflammation.
doi:10.1165/rcmb.2006-0259RC
PMCID: PMC1899315  PMID: 16980552
glutaredoxin; asthma; epithelium; IFN-γ; TGF-β
21.  Sex-related differences in respiratory symptoms: results from the BOLD Study 
The European Respiratory Journal  2013;42(3):858-860.
For the same degree of lung function impairment females tend to report more (severe) dyspnoea and cough, but less phlegm http://ow.ly/mp2CF
doi:10.1183/09031936.00047613
PMCID: PMC3759301  PMID: 24000253

Results 1-21 (21)