PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (32)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta‐analysis 
Thorax  2007;62(11):944-949.
Background
Skeletal muscle dysfunction is a common feature in chronic obstructive pulmonary disease (COPD) which is associated with intrinsic muscular abnormalities. One of the most consistently reported alterations is a shift from fibre type I to II in the vastus lateralis of these patients. Surprisingly, the relationship between this shift and the severity and phenotype of COPD remains unclear. A study was conducted to determine whether vastus lateralis muscle fibre type proportions are associated with COPD disease severity and to provide reference values for the proportions of fibre types in the vastus lateralis in COPD.
Methods
A systematic review and a meta‐analysis were conducted in which muscle fibre type data and markers of disease severity were collected from the literature.
Results
The forced expiratory volume in 1 s (FEV1), the ratio of FEV1 to forced vital capacity (FVC) and body mass index were positively associated with the proportion of type I fibres in COPD. A proportion of 51% for vastus lateralis fibre type I and 13% for fibre type IIX were calculated from the combined data as normal values for patients with typical GOLD stage 3–4 COPD aged 60–70 years. Based on these reference values, a proportion of fibre type I <27% and of fibre type IIX >29% were defined as pathologically abnormal.
Conclusions
This review sheds new light on the relationship between skeletal muscle abnormalities and important hallmarks of the disease in severe COPD, and identifies absence of data in GOLD stages 1–2. This review also provides reference values on fibre type composition for diagnostic purposes in COPD.
doi:10.1136/thx.2007.078980
PMCID: PMC2117111  PMID: 17526675
2.  Cellular protein breakdown and systemic inflammation are unaffected by pulmonary rehabilitation in COPD 
Thorax  2006;62(2):109-114.
Background
Pulmonary rehabilitation can improve the functional capacity, but has a variable effect on the low fat‐free mass (FFM) in patients with chronic obstructive pulmonary disease.
Hypothesis
Pulmonary rehabilitation would not affect catabolic drives such as systemic inflammation and also protein breakdown.
Methods
Patients (n = 40) were studied at the start of an 8‐week in‐patient pulmonary rehabilitation programme, at the end of the programme and 4 weeks later. FFM and functional capacity (quadriceps strength, handgrip strength and peak workload) were assessed. Pseudouridine (PSU) urinary excretion (cellular protein breakdown) and inflammatory status were determined. Healthy participants had a single baseline assessment (n = 18).
Results
PSU, (IL)‐6 and soluble tumour necrosis factor (sTNF)α R75 were increased in patients compared with healthy participants, whereas FFM and functional capacity were reduced (all p<0.01). PSU was inversely related to both FFM and skeletal muscle function. FFM and functional parameters increased with rehabilitation, but PSU and inflammatory status were unaffected. The gain in FFM was lost 4 weeks after the completion of rehabilitation (p<0.01).
Conclusion
The anabolic effect of pulmonary rehabilitation improved FFM, but it did not reverse the increased protein breakdown or systemic inflammation. Thus, on cessation of pulmonary rehabilitation the FFM gains were lost owing to a loss of anabolic drive.
doi:10.1136/thx.2006.060368
PMCID: PMC2111241  PMID: 16928709
3.  Silica-induced NLRP3 inflammasome activation in vitro and in rat lungs 
Rationale
Mineral particles in the lung cause inflammation and silicosis. In myeloid and bronchial epithelial cells the inflammasome plays a role in responses to crystalline silica. Thioredoxin (TRX) and its inhibitory protein TRX-interacting protein link oxidative stress with inflammasome activation. We investigated inflammasome activation by crystalline silica polymorphs and modulation by TRX in vitro, as well as its localization and the importance of silica surface reactivity in rats.
Methods
We exposed bronchial epithelial cells and differentiated macrophages to silica polymorphs quartz and cristobalite and measured caspase-1 activity as well as the release of IL-1β, bFGF and HMGB1; including after TRX overexpression or treatment with recombinant TRX. Rats were intratracheally instilled with vehicle control, Dörentruper quartz (DQ12) or DQ12 coated with polyvinylpyridine N-oxide. At days 3, 7, 28, 90, 180 and 360 five animals per treatment group were sacrificed. Hallmarks of silicosis were assessed with Haematoxylin-eosin and Sirius Red stainings. Caspase-1 activity in the bronchoalveolar lavage and caspase-1 and IL-1β localization in lung tissue were determined using Western blot and immunohistochemistry (IHC).
Results
Silica polymorphs triggered secretion of IL-1β, bFGF and HMGB1 in a surface reactivity dependent manner. Inflammasome readouts linked with caspase-1 enzymatic activity were attenuated by TRX overexpression or treatment. At day 3 and 7 increased caspase-1 activity was detected in BALF of the DQ12 group and increased levels of caspase-1 and IL-1β were observed with IHC in the DQ12 group compared to controls. DQ12 exposure revealed silicotic nodules at 180 and 360 days. Particle surface modification markedly attenuated the grade of inflammation and lymphocyte influx and attenuated the level of inflammasome activation, indicating that the development of silicosis and inflammasome activation is determined by crystalline silica surface reactivity.
Conclusion
Our novel data indicate the pivotal role of surface reactivity of crystalline silica to activate the inflammasome in cultures of both epithelial cells and macrophages. Inhibitory capacity of the antioxidant TRX to inflammasome activation was evidenced. DQ12 quartz exposure induced acute and chronic functional activation of the inflammasome in the heterogeneous cell populations of the lung in associated with its crystalline surface reactivity.
Electronic supplementary material
The online version of this article (doi:10.1186/s12989-014-0058-0) contains supplementary material, which is available to authorized users.
doi:10.1186/s12989-014-0058-0
PMCID: PMC4243278  PMID: 25406505
Crystalline silica; NLRP3 inflammasome; Caspase-1; IL-1β; HMGB1; bFGF; TRX; PVNO
4.  An observational, longitudinal study on the home environment of people with chronic obstructive pulmonary disease: the research protocol of the Home Sweet Home study 
BMJ Open  2014;4(11):e006098.
Introduction
Chronic obstructive pulmonary disease (COPD) represents an important public health challenge. Patients are confronted with limitations during activities of daily living (ADLs). Resident loved ones of patients with COPD may be uniquely positioned to witness these limitations. COPD may have an impact on not only the patients’ life, but also on the lives of the resident loved ones. Furthermore, COPD exacerbation-related hospital admissions often occur in patients with COPD. However, whether and to what extent these admissions influence resident loved ones’ burden and health status remains currently unknown. Therefore, the primary objectives of this study are to investigate the differences between patients with COPD and resident loved ones’ perceptions of patients’ health status and problematic ADLs and to study prospectively the effects of a COPD exacerbation on resident loved ones’ perceptions of patients’ health status and problematic ADLs.
Methods and analysis
An observational, longitudinal study will be performed in 192 patients with COPD and their 192 resident loved ones. Primary outcomes are daily functioning, ADL, disease-specific health status, generic health status and dyspnoea. These will be assessed during home visits at baseline and after 12 months. Additional home visits will be performed when a COPD exacerbation-related hospital admission occurs during the 12-month follow-up period.
Ethics and dissemination
This protocol was approved by the Medical Ethics Committee of the Catharina Hospital Eindhoven, the Netherlands (NL42721.060.12/M12-1280) and is registered in the Dutch Trial Register (NTR3941).
doi:10.1136/bmjopen-2014-006098
PMCID: PMC4244479  PMID: 25384686
Chronic Obstructive Pulmonary Disease; Home environment; Resident loved one; Family caregiver; Activities of Daily Living; Quality of Life
5.  Cigarette Smoke Extract Induces a Phenotypic Shift in Epithelial Cells; Involvement of HIF1α in Mesenchymal Transition 
PLoS ONE  2014;9(10):e107757.
In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-β and HIF1α signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-β signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1α knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1α signaling appears to play an important role in this process.
doi:10.1371/journal.pone.0107757
PMCID: PMC4199572  PMID: 25329389
6.  Leptin as regulator of pulmonary immune responses: Involvement in respiratory diseases 
Leptin is an adipocyte-derived hormone, recognized as a critical mediator of the balance between food intake and energy expenditure by signalling through its functional receptor (Ob-Rb) in the hypothalamus. Structurally, leptin belongs to the long-chain helical cytokine family, and is now known to have pleiotropic functions in both innate and adaptive immunity. The presence of the functional leptin receptor in the lung together with evidence of increased airspace leptin levels arising during pulmonary inflammation, suggests an important role for leptin in lung development, respiratory immune responses and eventually pathogenesis of inflammatory respiratory diseases. The purpose of this article is to review our current understanding of leptin and its functional role on the different resident cell types of the lung in health as well as in the context of three major respiratory conditions being chronic obstructive pulmonary disease (COPD), asthma, and pneumonia.
doi:10.1016/j.pupt.2013.03.016
PMCID: PMC4122282  PMID: 23542720
Leptin; Asthma; COPD; Pneumonia; Pulmonary immunity
7.  Prevalence of Metabolic Syndrome in COPD Patients and Its Consequences 
PLoS ONE  2014;9(6):e98013.
Background
The prevalence of metabolic syndrome in COPD patients and its impact on patient related outcomes has been little studied. We evaluated the prevalence of metabolic syndrome and clinical and functional characteristics in patients with COPD and healthy subjects.
Methods
228 COPD patients and 156 healthy subjects were included. Metabolic syndrome was defined using criteria of the IDF. In all patients spirometry, body composition, functional exercise performance, and mood and health status were assessed. Groups were stratified for BMI and gender.
Results
Metabolic syndrome was present in 57% of the COPD patients and 40% of the healthy subjects. After stratification for BMI, presence of metabolic syndrome in patients with a BMI ≥25 kg/m2 was higher than in healthy peers. Patients with metabolic syndrome and a BMI <25 kg/m2 had higher BMI, fat free mass index and bone mineral density, and a lower 6MWD than the BMI matched patients without metabolic syndrome. Spirometry, maximal ergometry, mood and health status, and blood gases were not different between those groups. In COPD patients with metabolic syndrome self-reported co-morbidities and medication use were higher than in those without.
Conclusion
Metabolic syndrome is more prevalent in overweight or obese COPD patients than in BMI matched healthy subjects. Metabolic syndrome did not additionally impact patients' functional outcomes, but did impact the prevalence of co-morbidities.
doi:10.1371/journal.pone.0098013
PMCID: PMC4064974  PMID: 24950070
8.  Early body weight loss during concurrent chemo-radiotherapy for non-small cell lung cancer 
Background and purpose
Radiation-esophagitis and weight loss are frequently observed toxicities in patients treated with concurrent chemo-radiotherapy (CT-RT) for non-small cell lung cancer (NSCLC) and might be related. The purpose was to investigate whether weight loss already starts early after initiation of CT-RT and precedes radiation-esophagitis.
Materials and methods
In a retrospective cohort, weight and esophagitis grade ≥2 were assessed during the first weeks of (CT-)RT in patients treated with concurrent (n = 102) or sequential (n = 92) therapy. In a prospective validation study, data on body weight, esophagitis grade ≥2, nutritional intake and muscle strength were obtained before, during and following CT-RT.
Results
In the retrospective cohort, early weight loss was observed in concurrently treated patients (p = 0.002), independent of esophagitis ≥ grade 2. Early weight loss was also observed in the prospective cohort (p = 0.003) and was not accompanied by decreases in nutritional intake. In addition lower limb muscle strength rapidly declined (p = 0.042). In the later weeks of treatment, further body weight loss occurred (p < 0.001) despite increased nutritional supplementation and body weight was only partly recovered after 4 weeks post CT-RT (p = 0.003).
Conclusions
Weight loss during concurrent CT-RT for NSCLC starts early and prior to onset of esophagitis, requiring timely and intense nutritional rehabilitation.
Electronic supplementary material
The online version of this article (doi:10.1007/s13539-013-0127-5) contains supplementary material.
doi:10.1007/s13539-013-0127-5
PMCID: PMC4053563  PMID: 24452446
Weight loss; Chemotherapy; Concurrent; Esophagitis; Non-small cell lung cancer; Radiotherapy
9.  Characteristics and determinants of endurance cycle ergometry and six-minute walk distance in patients with COPD 
Background
Exercise tolerance can be assessed by the cycle endurance test (CET) and six-minute walk test (6MWT) in patients with Chronic Obstructive Pulmonary Disease (COPD). We sought to investigate the characteristics of functional exercise performance and determinants of the CET and 6MWT in a large clinical cohort of COPD patients.
Methods
A dataset of 2053 COPD patients (43% female, age: 66.9 ± 9.5 years, FEV1% predicted: 48.2 ± 23.2) was analyzed retrospectively. Patients underwent, amongst others, respiratory function evaluation; medical tests and questionnaires, one maximal incremental cycle test where peak work rate was determined and two functional exercise tests: a CET at 75% of peak work rate and 6MWT. A stepwise multiple linear regression was used to assess determinants.
Results
On average, patients had impaired exercise tolerance (peak work rate: 56 ± 27% predicted, 6MWT: 69 ± 17% predicted). A total of 2002 patients had CET time of duration (CET-Tend) less than 20 min while only 51 (2.5%) of the patients achieved 20 min of CET-Tend . In former patients, the percent of predicted peak work rate achieved differed significantly between men (48 ± 21% predicted) and women (67 ± 31% predicted). In contrast, CET-Tend was longer in men (286 ± 174 s vs 250 ± 153 s, p < 0.001). Also, six minute walking distance (6MWD) was higher in men compared to women, both in absolute terms as in percent of predicted (443 m, 67%predicted vs 431 m, 72%predicted, p < 0.05). Gender was associated with the CET-Tend but BMI, FEV1 and FRC were related to the 6MWD highlighting the different determinants of exercise performance between CET and 6MWT.
Conclusions
CET-Tend is a valuable outcome of CET as it is related to multiple clinical aspects of disease severity in COPD. Gender difference should temper the interpretation of CET.
doi:10.1186/1471-2466-14-97
PMCID: PMC4229855  PMID: 24885117
Exercise; 6MWT; CET; CPET; COPD
10.  COgnitive-Pulmonary Disease 
BioMed Research International  2014;2014:697825.
Over the past few decades, chronic obstructive lung disease (COPD) has been considered a disease of the lungs, often caused by smoking. Nowadays, COPD is regarded as a systemic disease. Both physical effects and effects on brains, including impaired psychological and cognitive functioning, have been demonstrated. Patients with COPD may have cognitive impairment, either globally or in single cognitive domains, such as information processing, attention and concentration, memory, executive functioning, and self-control. Possible causes are hypoxemia, hypercapnia, exacerbations, and decreased physical activity. Cognitive impairment in these patients may be related to structural brain abnormalities, such as gray-matter pathologic changes and the loss of white matter integrity which can be induced by smoking. Cognitive impairment can have a negative impact on health and daily life and may be associated with widespread consequences for disease management programs. It is important to assess cognitive functioning in patients with COPD in order to optimize patient-oriented treatment and to reduce personal discomfort, hospital admissions, and mortality. This paper will summarize the current knowledge about cognitive impairment as extrapulmonary feature of COPD. Hereby, the impact of smoking on cognitive functioning and the impact of cognitive impairment on smoking behaviour will be examined.
doi:10.1155/2014/697825
PMCID: PMC3971492  PMID: 24738069
11.  The COgnitive-Pulmonary Disease (COgnitive-PD) study: protocol of a longitudinal observational comparative study on neuropsychological functioning of patients with COPD 
BMJ Open  2014;4(3):e004495.
Introduction
Intact cognitive functioning is necessary for patients with chronic obstructive pulmonary disease (COPD) to understand the value of healthy lifestyle guidelines, to make informed decisions and subsequently act on it. Nevertheless, brain abnormalities and cognitive impairment have been found in patients with COPD. To date, it remains unknown which cognitive domains are affected and what the possible consequences are of cognitive impairment. Therefore, objectives of the study described are to determine neuropsychological functioning in patients with COPD, and its influence on health status, daily functioning and pulmonary rehabilitation outcome. Furthermore, structural and functional brain abnormalities and the relationship with cognitive and daily functioning will be explored.
Methods and analysis
A longitudinal observational comparative study will be performed in 183 patients with COPD referred for pulmonary rehabilitation and in 90 healthy control participants. Demographic and clinical characteristics, activities of daily living and knowledge about COPD will be assessed. Baseline cognitive functioning will be compared between patients and controls using a detailed neuropsychological testing battery. An MRI substudy will be performed to compare brain abnormalities between 35 patients with COPD with cognitive impairment and 35 patients with COPD without cognitive impairment. Patients will be recruited between November 2013 and November 2015.
Ethics and dissemination
The study has been approved by the Medical Ethics Committee of the University Hospital Maastricht and Maastricht University (NL45127.068.13/METC 13-3-035) and is registered in the Dutch trial register. All participants will provide written informed consent and can withdraw from the study at any point in time. Assessment and home visit data material will be managed anonymously. The results obtained can be used to optimise patient-oriented treatment for cognitively impaired patients with COPD. The findings will be disseminated in international peer-reviewed journals and through research conferences.
doi:10.1136/bmjopen-2013-004495
PMCID: PMC3948451  PMID: 24589828
Respiratory Medicine (see Thoracic Medicine); Neuropathology
12.  Association of plasma sRAGE, but not esRAGE with lung function impairment in COPD 
Respiratory Research  2014;15(1):24.
Rationale
Plasma soluble Receptor for Advanced Glycation End Product (sRAGE) is considered as a biomarker in COPD. The contribution of endogenous sRAGE (esRAGE) to the pool of plasma sRAGE and the implication of both markers in COPD pathogenesis is however not clear yet. The aim of the current study was therefore to measure plasma levels of esRAGE comparative to total sRAGE in patients with COPD and a control group. Further, we established the relations of esRAGE and total sRAGE with disease specific characteristics such as lung function and DLCO, and with different circulating AGEs.
Methods
Plasma levels of esRAGE and sRAGE were measured in an 88 patients with COPD and in 55 healthy controls. FEV1 (%predicted) and FEV1/VC (%) were measured in both groups; DLCO (%predicted) was measured in patients only. In this study population we previously reported that the AGE Nϵ-(carboxymethyl) lysine (CML) was decreased, Nϵ-(carboxyethyl) lysine (CEL) increased and pentosidine was not different in plasma of COPD patients compared to controls.
Results
Plasma esRAGE (COPD: 533.9 ± 412.4, Controls: 848.7 ± 690.3 pg/ml; p = 0.000) was decreased in COPD compared to controls. No significant correlations were observed between plasma esRAGE levels and lung function parameters or plasma AGEs. A positive correlation was present between esRAGE and total sRAGE levels in the circulation. Confirming previous findings, total sRAGE (COPD: 512.6 ± 403.8, Controls: 1834 ± 804.2 pg/ml; p < 0.001) was lower in patients compared to controls and was positively correlated FEV1 (r = 0.235, p = 0.032), FEV1/VC (r = 0.218, p = 0.047), and DLCO (r = 0.308, p = 0.006). sRAGE furthermore did show a significant positive association with CML (r = 0.321, p = 0.003).
Conclusion
Although plasma esRAGE is decreased in COPD patients compared to controls, only total sRAGE showed a significant and independent association with FEV1, FEV1/VC and DLCO, indicating that total sRAGE but not esRAGE may serve as marker of COPD disease state and severity.
doi:10.1186/1465-9921-15-24
PMCID: PMC3944004  PMID: 24564838
sRAGE; esRAGE; FEV1; COPD
14.  A randomised controlled trial on the efficacy of advance care planning on the quality of end-of-life care and communication in patients with COPD: the research protocol 
BMJ Open  2014;4(1):e004465.
Introduction
Recent research shows that advance care planning (ACP) for patients with chronic obstructive pulmonary disease (COPD) is uncommon and poorly carried out. The aim of the present study was to explore whether and to what extent structured ACP by a trained nurse, in collaboration with the chest physician, can improve outcomes in Dutch patients with COPD and their family.
Methods and analysis
A multicentre cluster randomised controlled trial in patients with COPD who are recently discharged after an exacerbation has been designed. Patients will be recruited from three Dutch hospitals and will be assigned to an intervention or control group, depending on the randomisation of their chest physician. Patients will be assessed at baseline and after 6 and 12 months. The intervention group will receive a structured ACP session by a trained nurse. The primary outcomes are quality of communication about end-of-life care, symptoms of anxiety and depression, quality of end-of-life care and quality of dying. Secondary outcomes include concordance between patient's preferences for end-of-life care and received end-of-life care, and psychological distress in bereaved family members of deceased patients. Intervention and control groups will be compared using univariate analyses and clustered regression analysis.
Ethics and dissemination
Ethical approval was received from the Medical Ethical Committee of the Catharina Hospital Eindhoven, the Netherlands (NL42437.060.12). The current project provides recommendations for guidelines on palliative care in COPD and supports implementation of ACP in the regular clinical care.
Clinical trial registration number
NTR3940.
doi:10.1136/bmjopen-2013-004465
PMCID: PMC3902375  PMID: 24384905
Advance Care Planning; End-of-life Care; Palliative Care; COPD
15.  Metabolic and Structural Changes in Lower-Limb Skeletal Muscle Following Neuromuscular Electrical Stimulation: A Systematic Review 
PLoS ONE  2013;8(9):e69391.
Background
Transcutaneous neuromuscular electrical stimulation (NMES) can be applied as a complementary intervention to regular exercise training programs. A distinction can be made between high-frequency (HF) NMES and low-frequency (LF) NMES. In order to increase understanding of the mechanisms of functional improvements following NMES, the purpose of this study was to systematically review changes in enzyme activity, muscle fiber type composition and muscle fiber size in human lower-limb skeletal muscles following only NMES.
Methods
Trials were collected up to march 2012 and were identified by searching the Medline/PubMed, EMBASE, Cochrane Central Register of Controlled Trials, CINAHL and The Physical Therapy Evidence Database (PEDro) databases and reference lists. 18 trials were reviewed in detail: 8 trials studied changes in enzyme activities, 7 trials studied changes in muscle fiber type composition and 14 trials studied changes in muscle fiber size following NMES.
Results
The methodological quality generally was poor, and the heterogeneity in study design, study population, NMES features and outcome parameters prohibited the use of meta-analysis. Most of the LF-NMES studies reported significant increases in oxidative enzyme activity, while the results concerning changes in muscle fiber composition and muscle size were conflicting. HF-NMES significantly increased muscle size in 50% of the studies.
Conclusion
NMES seems to be a training modality resulting in changes in oxidative enzyme activity, skeletal muscle fiber type and skeletal muscle fiber size. However, considering the small sample sizes, the variance in study populations, the non-randomized controlled study designs, the variance in primary outcomes, and the large heterogeneity in NMES protocols, it is difficult to draw definitive conclusions about the effects of stimulation frequencies on muscular changes.
doi:10.1371/journal.pone.0069391
PMCID: PMC3760845  PMID: 24019860
16.  Silica induces NLRP3 inflammasome activation in human lung epithelial cells 
Background
In myeloid cells the inflammasome plays a crucial role in innate immune defenses against pathogen- and danger-associated patterns such as crystalline silica. Respirable mineral particles impinge upon the lung epithelium causing irreversible damage, sustained inflammation and silicosis. In this study we investigated lung epithelial cells as a target for silica-induced inflammasome activation.
Methods
A human bronchial epithelial cell line (BEAS-2B) and primary normal human bronchial epithelial cells (NHBE) were exposed to toxic but nonlethal doses of crystalline silica over time to perform functional characterization of NLRP3, caspase-1, IL-1β, bFGF and HMGB1. Quantitative RT-PCR, caspase-1 enzyme activity assay, Western blot techniques, cytokine-specific ELISA and fibroblast (MRC-5 cells) proliferation assays were performed.
Results
We were able to show transcriptional and translational upregulation of the components of the NLRP3 intracellular platform, as well as activation of caspase-1. NLRP3 activation led to maturation of pro-IL-1β to secreted IL-1β, and a significant increase in the unconventional release of the alarmins bFGF and HMGB1. Moreover, release of bFGF and HMGB1 was shown to be dependent on particle uptake. Small interfering RNA experiments using siNLRP3 revealed the pivotal role of the inflammasome in diminished release of pro-inflammatory cytokines, danger molecules and growth factors, and fibroblast proliferation.
Conclusion
Our novel data indicate the presence and functional activation of the NLRP3 inflammasome by crystalline silica in human lung epithelial cells, which prolongs an inflammatory signal and affects fibroblast proliferation, mediating a cadre of lung diseases.
doi:10.1186/1743-8977-10-3
PMCID: PMC3607900  PMID: 23402370
Silica; NLRP3 inflammasome; Caspase-1; IL-1β; HMGB1; bFGF
17.  Cigarette Smoke Targets Glutaredoxin 1, Increasing S-Glutathionylation and Epithelial Cell Death 
It is established that cigarette smoke (CS) causes irreversible oxidations in lung epithelial cells, and can lead to their death. However, its impact on reversible and physiologically relevant redox-dependent protein modifications remains to be investigated. Glutathione is an important antioxidant against inhaled reactive oxygen species as a direct scavenger, but it can also covalently bind protein thiols upon mild oxidative stress to protect them against irreversible oxidation. This posttranslational modification, known as S-glutathionylation, can be reversed under physiological conditions by the enzyme, glutaredoxin 1 (Grx1). The aim of this study was to investigate if CS modifies Grx1, and if this impacts on protein S-glutathionylation and epithelial cell death. Upon exposure of alveolar epithelial cells to CS extract (CSE), a decrease in Grx1 mRNA and protein expression was observed, in conjunction with decreased activity and increased protein S-glutathionylation. Using mass spectrometry, irreversible oxidation of recombinant Grx1 by CSE and acrolein was demonstrated, which was associated with attenuated enzyme activity. Furthermore, carbonylation of Grx1 in epithelial cells after exposure to CSE was shown. Overexpression of Grx1 attenuated CSE-induced increases in protein S-glutathionylation and increased survival. Conversely, primary tracheal epithelial cells of mice lacking Grx1 were more sensitive to CS-induced cell death, with corresponding increases in protein S-glutathionylation. These results show that CS can modulate Grx1, not only at the expression level, but can also directly modify Grx1 itself, decreasing its activity. These findings demonstrate a role for the Grx1/S-glutathionylation redox system in CS-induced lung epithelial cell death.
doi:10.1165/rcmb.2010-0249OC
PMCID: PMC3262689  PMID: 21454804
chronic obstructive pulmonary disease; cigarette smoke; cell death; glutaredoxin; protein S-glutathionylation
18.  Activation of the glutaredoxin-1 gene by Nuclear Factor kappa B enhances signaling 
Free radical biology & medicine  2011;51(6):1249-1257.
The transcription factor, Nuclear Factor kappa B (NF-κB) is a critical regulator of inflammation and immunity, and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyses deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice which express a doxycyclin-inducible constitutively active version of inhibitory kappa B kinase-beta (CA-IKKβ) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKβ also resulted in significant induction of Grx1. A 2kb region Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKβ, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression, and time-dependent increases in S-glutathionylation of IKKβ. Overexpression of Grx1 decreased S-glutathionylation of IKKβ, prolonged NF-κB activation, and increased levels of pro-inflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB, and suggests a feed forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation.
doi:10.1016/j.freeradbiomed.2011.06.025
PMCID: PMC3181077  PMID: 21762778
S-glutathionylation; Nuclear Factor kappa B; Glutaredoxin; Lung; Inhibitory kappa B kinase
19.  Genome-Wide Association Analysis of Body Mass in Chronic Obstructive Pulmonary Disease 
Cachexia, whether assessed by body mass index (BMI) or fat-free mass index (FFMI), affects a significant proportion of patients with chronic obstructive pulmonary disease (COPD), and is an independent risk factor for increased mortality, increased emphysema, and more severe airflow obstruction. The variable development of cachexia among patients with COPD suggests a role for genetic susceptibility. The objective of the present study was to determine genetic susceptibility loci involved in the development of low BMI and FFMI in subjects with COPD. A genome-wide association study (GWAS) of BMI was conducted in three independent cohorts of European descent with Global Initiative for Chronic Obstructive Lung Disease stage II or higher COPD: Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-Points (ECLIPSE; n = 1,734); Norway-Bergen cohort (n = 851); and a subset of subjects from the National Emphysema Treatment Trial (NETT; n = 365). A genome-wide association of FFMI was conducted in two of the cohorts (ECLIPSE and Norway). In the combined analyses, a significant association was found between rs8050136, located in the first intron of the fat mass and obesity–associated (FTO) gene, and BMI (P = 4.97 × 10−7) and FFMI (P = 1.19 × 10−7). We replicated the association in a fourth, independent cohort consisting of 502 subjects with COPD from COPDGene (P = 6 × 10−3). Within the largest contributing cohort of our analysis, lung function, as assessed by forced expiratory volume at 1 second, varied significantly by FTO genotype. Our analysis suggests a potential role for the FTO locus in the determination of anthropomorphic measures associated with COPD.
doi:10.1165/rcmb.2010-0294OC
PMCID: PMC3266061  PMID: 21037115
chronic obstructive pulmonary disease genetics; chronic obstructive pulmonary disease epidemiology; chronic obstructive pulmonary disease metabolism; genome-wide association study
20.  Effects of Body Mass Index on Task-Related Oxygen Uptake and Dyspnea during Activities of Daily Life in COPD 
PLoS ONE  2012;7(7):e41078.
Background
Patients with COPD use a higher proportion of their peak aerobic capacity during the performance of domestic activities of daily life (ADLs) compared to healthy peers, accompanied by a higher degree of task-related symptoms. To date, the influence of body mass index (BMI) on the task-related metabolic demands remains unknown in patients with COPD. Therefore, the aim of our study was to determine the effects of BMI on metabolic load during the performance of 5 consecutive domestic ADLs in patients with COPD.
Methodology
Ninety-four COPD patients and 20 healhty peers performed 5 consecutive, self-paced domestic ADLs putting on socks, shoes and vest; folding 8 towels; putting away groceries; washing up 4 dishes, cups and saucers; and sweeping the floor for 4 min. Task-related oxygen uptake and ventilation were assessed using a mobile oxycon, while Borg scores were used to assess task-related dyspnea and fatigue.
Principal Findings
1. Relative task-related oxygen uptake after the performance of domestic ADLs was increased in patients with COPD compared to healthy elderly, whereas absolute oxygen uptake is similar between groups; 2. Relative oxygen uptake and oxygen uptake per kilogram fat-free mass were comparable between BMI groups; and 3. Borg symptom scores for dyspnea en fatigue were comparable between BMI groups.
Conclusion
Patients with COPD in different BMI groups perform self-paced domestic ADLs at the same relative metabolic load, accompanied by comparable Borg symptom scores for dyspnea and fatigue.
doi:10.1371/journal.pone.0041078
PMCID: PMC3398871  PMID: 22815922
21.  Altered Cigarette Smoke-Induced Lung Inflammation Due to Ablation of Grx1 
PLoS ONE  2012;7(6):e38984.
Glutaredoxins (Grx) are redox enzymes that remove glutathione bound to protein thiols, know as S-glutathionylation (PSSG). PSSG is a reservoir of GSH and can affect the function of proteins. It inhibits the NF-κB pathway and LPS aspiration in Grx1 KO mice with decreased inflammatory cytokine levels. In this study we investigated whether absence of Grx1 similarly repressed cigarette smoke-induced inflammation in an exposure model in mice. Cigarette smoke exposure for four weeks decreased lung PSSG levels, but increased PSSG in lavaged cells and lavage fluid (BALF). Grx1 KO mice had increased levels of PSSG in lung tissue, BALF and BAL cells in response to smoke compared to wt mice. Importantly, levels of multiple inflammatory mediators in the BALF were decreased in Grx1 KO animals following cigarette smoke exposure compared to wt mice, as were levels of neutrophils, dendritic cells and lymphocytes. On the other hand, macrophage numbers were higher in Grx1 KO mice in response to smoke. Although cigarette smoke in vivo caused inverse effects in inflammatory and resident cells with respect to PSSG, primary macrophages and epithelial cells cultured from Grx1 KO mice both produced less KC compared to cells isolated from WT mice after smoke extract exposure. In this manuscript, we provide evidence that Grx1 has an important role in regulating cigarette smoke-induced lung inflammation which seems to diverge from its effects on total PSSG. Secondly, these data expose the differential effect of cigarette smoke on PSSG in inflammatory versus resident lung cells.
doi:10.1371/journal.pone.0038984
PMCID: PMC3377591  PMID: 22723915
22.  Differences in Walking Pattern during 6-Min Walk Test between Patients with COPD and Healthy Subjects 
PLoS ONE  2012;7(5):e37329.
Background
To date, detailed analyses of walking patterns using accelerometers during the 6-min walk test (6MWT) have not been performed in patients with chronic obstructive pulmonary disease (COPD). Therefore, it remains unclear whether and to what extent COPD patients have an altered walking pattern during the 6MWT compared to healthy elderly subjects.
Methodology/Principal Findings
79 COPD patients and 24 healthy elderly subjects performed the 6MWT wearing an accelerometer attached to the trunk. The accelerometer features (walking intensity, cadence, and walking variability) and subject characteristics were assessed and compared between groups. Moreover, associations were sought with 6-min walk distance (6MWD) using multiple ordinary least squares (OLS) regression models. COPD patients walked with a significantly lower walking intensity, lower cadence and increased walking variability compared to healthy subjects. Walking intensity and height were the only two significant determinants of 6MWD in healthy subjects, explaining 85% of the variance in 6MWD. In COPD patients also age, cadence, walking variability measures and their interactions were included were significant determinants of 6MWD (total variance in 6MWD explained: 88%).
Conclusions/Significance
COPD patients have an altered walking pattern during 6MWT compared to healthy subjects. These differences in walking pattern partially explain the lower 6MWD in patients with COPD.
doi:10.1371/journal.pone.0037329
PMCID: PMC3356256  PMID: 22624017
25.  Multistudy Fine Mapping of Chromosome 2q Identifies XRCC5 as a Chronic Obstructive Pulmonary Disease Susceptibility Gene 
Rationale: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q.
Objectives: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q.
Methods: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from the National Emphysema Treatment Trial and 330 community control subjects. Significant associations from the combined results across the two case-control studies were followed up in 1,839 individuals from 603 families from the International COPD Genetics Network (ICGN) and in 949 individuals from 127 families in the Boston Early-Onset COPD Study.
Measurements and Main Results: Merging the results of the two case-control analyses, 14 of the 790 overlapping SNPs had a combined P < 0.01. Two of these 14 SNPs were consistently associated with COPD in the ICGN families. The association with one SNP, located in the gene XRCC5, was replicated in the Boston Early-Onset COPD Study, with a combined P = 2.51 × 10−5 across the four studies, which remains significant when adjusted for multiple testing (P = 0.02). Genotype imputation confirmed the association with SNPs in XRCC5.
Conclusions: By combining data from COPD genetic association studies conducted in four independent patient samples, we have identified XRCC5, an ATP-dependent DNA helicase, as a potential COPD susceptibility gene.
doi:10.1164/rccm.200910-1586OC
PMCID: PMC2937234  PMID: 20463177
emphysema; genetic linkage; metaanalysis; single nucleotide polymorphism

Results 1-25 (32)