Search tips
Search criteria

Results 1-25 (42)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses 
Nature communications  2013;4:10.1038/ncomms3770.
The straw-coloured fruit bat, Eidolon helvum, is Africa’s most widely distributed and commonly hunted fruit bat, often living in close proximity to human populations. This species has been identified as a reservoir of potentially zoonotic viruses, but uncertainties remain regarding viral transmission dynamics and mechanisms of persistence. Here we combine genetic and serological analyses of populations across Africa, to determine the extent of epidemiological connectivity among E. helvum populations. Multiple markers reveal panmixia across the continental range, at a greater geographical scale than previously recorded for any other mammal, whereas populations on remote islands were genetically distinct. Multiple serological assays reveal antibodies to henipaviruses and Lagos bat virus in all locations, including small isolated island populations, indicating that factors other than population size and connectivity may be responsible for viral persistence. Our findings have potentially important public health implications, and highlight a need to avoid disturbances which may precipitate viral spillover.
PMCID: PMC3836177  PMID: 24253424
2.  Using Modelling to Disentangle the Relative Contributions of Zoonotic and Anthroponotic Transmission: The Case of Lassa Fever 
Zoonotic infections, which transmit from animals to humans, form the majority of new human pathogens. Following zoonotic transmission, the pathogen may already have, or may acquire, the ability to transmit from human to human. With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Indeed, large hospital-related outbreaks have been reported. Estimating the proportion of transmission due to human-to-human routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions.
Methodology/Principal Findings
Here, we make use of an innovative modeling approach to analyze data from published outbreaks and the number of LF hospitalized patients to Kenema Government Hospital in Sierra Leone to estimate the likely contribution of human-to-human transmission. The analyses show that almost of the cases at KGH are secondary cases arising from human-to-human transmission. However, we found much of this transmission is associated with a disproportionally large impact of a few individuals (‘super-spreaders’), as we found only of human cases result in an effective reproduction number (i.e. the average number of secondary cases per infectious case) , with a maximum value up to .
This work explains the discrepancy between the sizes of reported LF outbreaks and a clinical perception that human-to-human transmission is low. Future assessment of risks of LF and infection control guidelines should take into account the potentially large impact of super-spreaders in human-to-human transmission. Our work highlights several neglected topics in LF research, the occurrence and nature of super-spreading events and aspects of social behavior in transmission and detection.
Author Summary
Many pathogens have the ability to infect different species. Lassa fever virus is an important example; this virus infects a species of rodent in West Africa, and can cause a severe disease in people. Lassa fever virus is transmitted from rodent-to-rodent, rodent-to-human, human-to-human and perhaps human-to-rodent. So far, the relative importance of these routes has not been assessed. Here we focus on the risk for humans; undoubtedly, most human infections are acquired by contact with rodents or their urine, but the relative risk of rodent-to-human and human-to-human transmission is unknown. We use mathematical modeling to address this. First, we identified Lassa fever outbreaks known to be due to human-to-human chains of transmission. Then, we looked at people hospitalized with the disease in Kenema Government Hospital, Sierra Leone (KGH), who could have been infected either by rodents or humans. We asked, what should the proportion of patients be who get infected by humans, assuming the statistical patterns observed in the human-to-human chains are the same in both instances? We found that around of patients with Lassa fever in KGH probably acquired the disease from another person. In addition, the patterns of disease in people suggest that these of cases are probably initiated by only a small number of infected people (who could be thought of as super-spreaders).
PMCID: PMC4288732  PMID: 25569707
3.  The demography of free-roaming dog populations and applications to disease and population control 
The Journal of Applied Ecology  2014;51(4):1096-1106.
1. Understanding the demography of domestic dog populations is essential for effective disease control, particularly of canine-mediated rabies. Demographic data are also needed to plan effective population management. However, no study has comprehensively evaluated the contribution of demographic processes (i.e. births, deaths and movement) to variations in dog population size or density, or determined the factors that regulate these processes, including human factors.
2. We report the results of a 3-year cohort study of domestic dogs, which is the first to generate detailed data on the temporal variation of these demographic characteristics. The study was undertaken in two communities in each of Bali, Indonesia and Johannesburg, South Africa, in rabies-endemic areas and where the majority of dogs were free-roaming. None of the four communities had been engaged in any dog population management interventions by local authorities or animal welfare organizations. All identified dogs in the four communities were monitored individually throughout the study.
3. We observed either no population growth or a progressive decline in population size during the study period. There was no clear evidence that population size was regulated through environmental resource constraints. Rather, almost all of the identified dogs were owned and fed regularly by their owners, consistent with population size regulated by human demand. Finally, a substantial fraction of the dogs originated from outside the population, entirely through the translocation of dogs by people, rather than from local births. These findings demonstrate that previously reported growth of dog populations is not a general phenomenon and challenge the widely held view that free-roaming dogs are unowned and form closed populations.
4. Synthesis and applications. These observations have broad implications for disease and population control. The accessibility of dogs for vaccination and evaluation through owners and the movement of dogs (some of them infected) by people will determine the viable options for disease control strategies. The impact of human factors on population dynamics will also influence the feasibility of annual vaccination campaigns to control rabies and population control through culling or sterilization. The complex relationship between dogs and people is critically important in the transmission and control of canine-mediated rabies. For effective management, human factors must be considered in the development of disease and population control programmes.
PMCID: PMC4285860  PMID: 25657481
demography; developing communities; disease transmission; free-roaming domestic dogs; population management; rabies control; vaccination coverage
4.  Achieving Population-Level Immunity to Rabies in Free-Roaming Dogs in Africa and Asia 
Canine rabies can be effectively controlled by vaccination with readily available, high-quality vaccines. These vaccines should provide protection from challenge in healthy dogs, for the claimed period, for duration of immunity, which is often two or three years. It has been suggested that, in free-roaming dog populations where rabies is endemic, vaccine-induced protection may be compromised by immuno-suppression through malnutrition, infection and other stressors. This may reduce the proportion of dogs that seroconvert to the vaccine during vaccination campaigns and the duration of immunity of those dogs that seroconvert. Vaccination coverage may also be limited through insufficient vaccine delivery during vaccination campaigns and the loss of vaccinated individuals from populations through demographic processes. This is the first longitudinal study to evaluate temporal variations in rabies vaccine-induced serological responses, and factors associated with these variations, at the individual level in previously unvaccinated free-roaming dog populations. Individual-level serological and health-based data were collected from three cohorts of dogs in regions where rabies is endemic, one in South Africa and two in Indonesia. We found that the vast majority of dogs seroconverted to the vaccine; however, there was considerable variation in titres, partly attributable to illness and lactation at the time of vaccination. Furthermore, >70% of the dogs were vaccinated through community engagement and door-to-door vaccine delivery, even in Indonesia where the majority of the dogs needed to be caught by net on successive occasions for repeat blood sampling and vaccination. This demonstrates the feasibility of achieving population-level immunity in free-roaming dog populations in rabies-endemic regions. However, attrition of immune individuals through demographic processes and waning immunity necessitates repeat vaccination of populations within at least two years to ensure communities are protected from rabies. These findings support annual mass vaccination campaigns as the most effective means to control canine rabies.
Author Summary
Canine-mediated rabies is a horrific disease that claims tens of thousands of human lives every year, particularly in Asia and Africa. The disease can be effectively controlled through mass vaccination of dogs with high-quality vaccines; however, questions remain over the effectiveness of vaccination where the health status of free-roaming dogs may be compromised and the life expectancy and access to these dogs may be limited. This study evaluated rabies-vaccine induced immune responses and vaccine delivery in previously unvaccinated, free-roaming dog populations in two rabies endemic regions in Asia and Africa, to better understand the effectiveness of vaccination campaigns. We found that the majority of dogs seroconverted to the vaccine regardless of health status. Excellent vaccination coverage was achieved through community engagement and door-to-door vaccine delivery, even where the majority of the dogs needed to be caught by net for vaccination. However, attrition of immune individuals through demographic processes and waning immunity reinforces the importance of frequent and regular vaccination campaigns to ensure effective vaccination coverage is maintained.
PMCID: PMC4230884  PMID: 25393023
5.  Evolution of Equine Influenza Virus in Vaccinated Horses 
Journal of Virology  2013;87(8):4768-4771.
Influenza A viruses are characterized by their ability to evade host immunity, even in vaccinated individuals. To determine how prior immunity shapes viral diversity in vivo, we studied the intra- and interhost evolution of equine influenza virus in vaccinated horses. Although the level and structure of genetic diversity were similar to those in naïve horses, intrahost bottlenecks may be more stringent in vaccinated animals, and mutations shared among horses often fall close to putative antigenic sites.
PMCID: PMC3624384  PMID: 23388708
6.  Bat Flight and Zoonotic Viruses 
Emerging Infectious Diseases  2014;20(5):741-745.
High metabolism and body temperatures of flying bats might enable them to host many viruses.
Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.
PMCID: PMC4012789  PMID: 24750692
bats; body temperature; Chiroptera; emerging zoonotic viruses; fever; flight; metabolic rate; mammals
7.  A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? 
Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs.
PMCID: PMC3574368  PMID: 23378666
trait-based approaches; zoonoses; viral richness; reservoir host; spillover; Chiroptera
8.  Inferring the inter-host transmission of influenza A virus using patterns of intra-host genetic variation 
Influenza A viruses (IAVs) cause acute, highly transmissible infections in a wide range of animal species. Understanding how these viruses are transmitted within and between susceptible host populations is critical to the development of effective control strategies. While viral gene sequences have been used to make inferences about IAV transmission dynamics at the epidemiological scale, their utility in accurately determining patterns of inter-host transmission in the short-term—i.e. who infected whom—has not been strongly established. Herein, we use intra-host sequence data from the viral HA1 (hemagglutinin) gene domain from two transmission studies employing different IAV subtypes in their natural hosts—H3N8 in horses and H1N1 in pigs—to determine how well these data recapitulate the known pattern of inter-host transmission. Although no mutations were fixed over the course of either experimental transmission chain, we show that some minor, transient alleles can provide evidence of host-to-host transmission and, importantly, can be distinguished from those that cannot.
PMCID: PMC3574438  PMID: 23135678
influenza A virus; transmission; evolution; phylogeny; phylodynamics
9.  Quantifying the Impact of Immune Escape on Transmission Dynamics of Influenza 
Science (New York, N.Y.)  2009;326(5953):726-728.
Influenza virus evades prevailing natural and vaccine-induced immunity by accumulating antigenic change in the haemagglutinin surface protein. Linking amino acid substitutions in haemagglutinin epitopes to epidemiology has been problematic because of the scarcity of data connecting these scales. We use experiments on equine influenza virus to address this issue, quantifying how key parameters of viral establishment and shedding increase the probability of transmission with genetic distance between previously immunizing virus and challenge virus. Qualitatively similar patterns emerge from analyses based on antigenic distance and from a published human influenza study. Combination of the equine data and epidemiological models allows us to calculate the effective reproductive number of transmission as a function of relevant genetic change in the virus, illuminating the probability of influenza epidemics as a function of immunity.
PMCID: PMC3800096  PMID: 19900931
10.  A restatement of the natural science evidence base relevant to the control of bovine tuberculosis in Great Britain† 
Bovine tuberculosis (bTB) is a very important disease of cattle in Great Britain, where it has been increasing in incidence and geographical distribution. In addition to cattle, it infects other species of domestic and wild animals, in particular the European badger (Meles meles). Policy to control bTB is vigorously debated and contentious because of its implications for the livestock industry and because some policy options involve culling badgers, the most important wildlife reservoir. This paper describes a project to provide a succinct summary of the natural science evidence base relevant to the control of bTB, couched in terms that are as policy-neutral as possible. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.
PMCID: PMC3757986  PMID: 23926157
bovine tuberculosis; epidemiology; cattle; badgers; vaccination
11.  Evidence for multiple waves of global transmission within the seventh cholera pandemic 
Nature  2011;477(7365):462-465.
Vibrio cholerae is a globally important pathogen that is endemic in many areas of the world and causes 3-5 million reported cases of cholera every year ( Historically there have been seven acknowledged cholera pandemics; included in the 7th and ongoing pandemic are the recent outbreaks in Zimbabwe and Haiti1. Only serogroup O1 isolates (consisting of two biotypes known as ‘classical’ and ‘El Tor’) and the derivative O1392,3 can cause epidemic cholera2. It is believed that the first six cholera pandemics were caused by the classical biotype but El Tor has subsequently spread globally and replaced the classical biotype in the current pandemic1. Detailed molecular epidemiological mapping of cholera has been compromised by a reliance on sub-genomic regions such as mobile elements to infer relationships, making El Tor isolates associated with the 7th pandemic appear superficially diverse. To understand the underlying phylogeny of the lineage responsible for the current pandemic we identified high resolution markers (single nucleotide polymorphisms; SNPs) in 154 whole genome sequences of globally and temporally representative V. cholerae isolates. Using this phylogeny we show that the 7th pandemic has spread from the Bay of Bengal in at least three independent but overlapping waves with a common ancestor in the 1950’s and identify multiple transcontinental transmission events. Additionally, we show how the acquisition of the SXT family of antibiotic resistance elements has shaped the pandemic spread and show that it was first acquired at least 10 years prior to its discovery in V. cholerae.
PMCID: PMC3736323  PMID: 21866102
12.  Metagenomic study of the viruses of African straw-coloured fruit bats: Detection of a chiropteran poxvirus and isolation of a novel adenovirus 
Virology  2013;441(2):95-106.
Viral emergence as a result of zoonotic transmission constitutes a continuous public health threat. Emerging viruses such as SARS coronavirus, hantaviruses and henipaviruses have wildlife reservoirs. Characterising the viruses of candidate reservoir species in geographical hot spots for viral emergence is a sensible approach to develop tools to predict, prevent, or contain emergence events. Here, we explore the viruses of Eidolon helvum, an Old World fruit bat species widely distributed in Africa that lives in close proximity to humans. We identified a great abundance and diversity of novel herpes and papillomaviruses, described the isolation of a novel adenovirus, and detected, for the first time, sequences of a chiropteran poxvirus closely related with Molluscum contagiosum. In sum, E. helvum display a wide variety of mammalian viruses, some of them genetically similar to known human pathogens, highlighting the possibility of zoonotic transmission.
•The first metagenomic study of a chiropteran (bat) suborder.•Demonstrates a novel and thorough bioinformatics pipeline for metagenomic studies.•Multiple novel, diverse viruses present in an urban African bat bushmeat species.•The study is supported with further molecular evidence and virus isolation.•The study contains the first evidence of chiropteran poxviruses and a novel bat adenovirus isolate.
PMCID: PMC3667569  PMID: 23562481
Virome; Bat; Megabat; Poxvirus; Viral emergence; Metagenomics; Adenovirus
13.  Where are the horses? With the sheep or cows? Uncertain host location, vector-feeding preferences and the risk of African horse sickness transmission in Great Britain 
Understanding the influence of non-susceptible hosts on vector-borne disease transmission is an important epidemiological problem. However, investigation of its impact can be complicated by uncertainty in the location of the hosts. Estimating the risk of transmission of African horse sickness (AHS) in Great Britain (GB), a virus transmitted by Culicoides biting midges, provides an insightful example because: (i) the patterns of risk are expected to be influenced by the presence of non-susceptible vertebrate hosts (cattle and sheep) and (ii) incomplete information on the spatial distribution of horses is available because the GB National Equine Database records owner, rather than horse, locations. Here, we combine land-use data with available horse owner distributions and, using a Bayesian approach, infer a realistic distribution for the location of horses. We estimate the risk of an outbreak of AHS in GB, using the basic reproduction number (R0), and demonstrate that mapping owner addresses as a proxy for horse location significantly underestimates the risk. We clarify the role of non-susceptible vertebrate hosts by showing that the risk of disease in the presence of many hosts (susceptible and non-susceptible) can be ultimately reduced to two fundamental factors: first, the abundance of vectors and how this depends on host density, and, second, the differential feeding preference of vectors among animal species.
PMCID: PMC3645429  PMID: 23594817
epidemiology; dilution effect; vector-borne disease; basic reproduction number; Culicoides
14.  Demography of straw-colored fruit bats in Ghana 
Journal of mammalogy  2012;93(5):1393-1404.
Eidolon helvum is widely distributed across sub-Saharan Africa where it forms large, dense colonies. The species is migratory and satellite telemetry studies have demonstrated that individuals can migrate over 2,500 km. It is a common source of bush meat in West Africa and evidence of infection with potentially zoonotic viruses has been found in West African colonies. The species, therefore, is of interest to both ecologists and those interested in public health. Despite this, demographic parameters of the species are unknown. We focused our study primarily on a colony of up to 1,000,000 bats that roost in trees in Accra, Ghana to obtain estimates of birth rate and survival probability. Aging of bats by examination of tooth cementum annuli allowed use of life tables to indicate an annual survival probability for juveniles of 0.43 (95% confidence interval [CI] 0.16–0.77) and for adults of 0.83 (95% CI 0.73–0.93). Additionally, an annual adult survival probability of 0.63 (95% CI 0.27–0.88) was estimated by following 98 radiocollared bats over a year; capture–recapture data were analyzed using multistate models to address the confounding factor of emigration. True survival probabilities may be in between the 2 estimates, because permanent emigration may lead to underestimation in the capture–recapture study, and population decline may lead to overestimation in the life table analysis. Birth rates (0.96 young per female per year, 95% CI 0.92–0.98) and colony size changes were also estimated. Estimation of these key parameters will allow future analyses of both infection dynamics within, and harvest sustainability of, E. helvum populations.
PMCID: PMC3605799  PMID: 23525358
capture–recapture; Eidolon helvum; multistate model; population dynamics; survival; tooth cementum
15.  Novel, Potentially Zoonotic Paramyxoviruses from the African Straw-Colored Fruit Bat Eidolon helvum 
Journal of Virology  2013;87(3):1348-1358.
Bats carry a variety of paramyxoviruses that impact human and domestic animal health when spillover occurs. Recent studies have shown a great diversity of paramyxoviruses in an urban-roosting population of straw-colored fruit bats in Ghana. Here, we investigate this further through virus isolation and describe two novel rubulaviruses: Achimota virus 1 (AchPV1) and Achimota virus 2 (AchPV2). The viruses form a phylogenetic cluster with each other and other bat-derived rubulaviruses, such as Tuhoko viruses, Menangle virus, and Tioman virus. We developed AchPV1- and AchPV2-specific serological assays and found evidence of infection with both viruses in Eidolon helvum across sub-Saharan Africa and on islands in the Gulf of Guinea. Longitudinal sampling of E. helvum indicates virus persistence within fruit bat populations and suggests spread of AchPVs via horizontal transmission. We also detected possible serological evidence of human infection with AchPV2 in Ghana and Tanzania. It is likely that clinically significant zoonotic spillover of chiropteran paramyxoviruses could be missed throughout much of Africa where health surveillance and diagnostics are poor and comorbidities, such as infection with HIV or Plasmodium sp., are common.
PMCID: PMC3554137  PMID: 23152534
16.  Transmission of Equine Influenza Virus during an Outbreak Is Characterized by Frequent Mixed Infections and Loose Transmission Bottlenecks 
PLoS Pathogens  2012;8(12):e1003081.
The ability of influenza A viruses (IAVs) to cross species barriers and evade host immunity is a major public health concern. Studies on the phylodynamics of IAVs across different scales – from the individual to the population – are essential for devising effective measures to predict, prevent or contain influenza emergence. Understanding how IAVs spread and evolve during outbreaks is critical for the management of epidemics. Reconstructing the transmission network during a single outbreak by sampling viral genetic data in time and space can generate insights about these processes. Here, we obtained intra-host viral sequence data from horses infected with equine influenza virus (EIV) to reconstruct the spread of EIV during a large outbreak. To this end, we analyzed within-host viral populations from sequences covering 90% of the infected yards. By combining gene sequence analyses with epidemiological data, we inferred a plausible transmission network, in turn enabling the comparison of transmission patterns during the course of the outbreak and revealing important epidemiological features that were not apparent using either approach alone. The EIV populations displayed high levels of genetic diversity, and in many cases we observed distinct viral populations containing a dominant variant and a number of related minor variants that were transmitted between infectious horses. In addition, we found evidence of frequent mixed infections and loose transmission bottlenecks in these naturally occurring populations. These frequent mixed infections likely influence the size of epidemics.
Author Summary
Influenza A viruses (IAVs) are major pathogens of humans and animals. Understanding how IAVs spread and evolve at different scales (individual, regional, global) in natural conditions is critical for preventing or managing influenza epidemics. A vast body of knowledge has been generated on the evolution of IAVs at the global scale. Additionally, recent experimental transmission studies have examined the diversity and transmission of influenza viruses within and between hosts. However, most studies on the spread of IAVs during epidemics have been based on consensus viral sequences, an approach that does not have enough discriminatory power to reveal exact transmission pathways. Here, we analyzed multiple within-host viral populations from different horses infected with equine influenza virus (EIV) during the course of an outbreak in a population within a confined area. This provided an opportunity to examine the genetic diversity of the viruses within single animals, the transmission of the viruses between each closely confined population within a yard, and the transmission between horses in different yards. We show that individual horses can be infected by viruses from more than one other horse, which has important implications for facilitating segment reassortment and the evolution of EIV. Additionally, by combining viral sequencing data and epidemiological data we show that the high levels of mixed infections can reveal the underlying epidemiological dynamics of the outbreak, and that epidemic size could be underestimated if only epidemiological data is considered. As sequencing technologies become cheaper and faster, these analyses could be undertaken almost in real-time and help control future outbreaks.
PMCID: PMC3534375  PMID: 23308065
17.  The Effect of Badger Culling on Breakdown Prolongation and Recurrence of Bovine Tuberculosis in Cattle Herds in Great Britain 
PLoS ONE  2012;7(12):e51342.
Bovine tuberculosis is endemic in cattle herds in Great Britain, with a substantial economic impact. A reservoir of Mycobacterium bovis within the Eurasian badger (Meles meles) population is thought to have hindered disease control. Cattle herd incidents, termed breakdowns, that are either ‘prolonged’ (lasting ≥240 days) or ‘recurrent’ (with another breakdown within a specified time period) may be important foci for onward spread of infection. They drain veterinary resources and can be demoralising for farmers. Randomised Badger Culling Trial (RBCT) data were re-analysed to examine the effects of two culling strategies on breakdown prolongation and recurrence, during and after culling, using a Bayesian hierarchical model. Separate effect estimates were obtained for the ‘core’ trial areas (where culling occurred) and the ‘buffer’ zones (up to 2 km outside of the core areas). For breakdowns that started during the culling period, ‘reactive’ (localised) culling was associated with marginally increased odds of prolongation, with an odds ratio (OR) of 1.7 (95% credible interval [CI] 1.1–2.4) within the core areas. This effect was not present after the culling ceased. There was no notable effect of ‘proactive’ culling on prolongation. In contrast, reactive culling had no effect on breakdown recurrence, though there was evidence of a reduced risk of recurrence in proactive core areas during the culling period (ORs and 95% CIs: 0.82 (0.64–1.0) and 0.69 (0.54–0.86) for 24- and 36-month recurrence respectively). Again these effects were not present after the culling ceased. There seemed to be no effect of culling on breakdown prolongation or recurrence in the buffer zones. These results suggest that the RBCT badger culling strategies are unlikely to reduce either the prolongation or recurrence of breakdowns in the long term, and that reactive strategies (such as employed during the RBCT) are, if anything, likely to impact detrimentally on breakdown persistence.
PMCID: PMC3517421  PMID: 23236478
18.  A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study 
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation.
PMCID: PMC3427567  PMID: 22966143
bat; zoonosis; emergence; collaborative framework
19.  Estimating the Hidden Burden of Bovine Tuberculosis in Great Britain 
PLoS Computational Biology  2012;8(10):e1002730.
The number of cattle herds placed under movement restrictions in Great Britain (GB) due to the suspected presence of bovine tuberculosis (bTB) has progressively increased over the past 25 years despite an intensive and costly test-and-slaughter control program. Around 38% of herds that clear movement restrictions experience a recurrent incident (breakdown) within 24 months, suggesting that infection may be persisting within herds. Reactivity to tuberculin, the basis of diagnostic testing, is dependent on the time from infection. Thus, testing efficiency varies between outbreaks, depending on weight of transmission and cannot be directly estimated. In this paper, we use Approximate Bayesian Computation (ABC) to parameterize two within-herd transmission models within a rigorous inferential framework. Previous within-herd models of bTB have relied on ad-hoc methods of parameterization and used a single model structure (SORI) where animals are assumed to become detectable by testing before they become infectious. We study such a conventional within-herd model of bTB and an alternative model, motivated by recent animal challenge studies, where there is no period of epidemiological latency before animals become infectious (SOR). Under both models we estimate that cattle-to-cattle transmission rates are non-linearly density dependent. The basic reproductive ratio for our conventional within-herd model, estimated for scenarios with no statutory controls, increases from 1.5 (0.26–4.9; 95% CI) in a herd of 30 cattle up to 4.9 (0.99–14.0) in a herd of 400. Under this model we estimate that 50% (33–67) of recurrent breakdowns in Britain can be attributed to infection missed by tuberculin testing. However this figure falls to 24% (11–42) of recurrent breakdowns under our alternative model. Under both models the estimated extrinsic force of infection increases with the burden of missed infection. Hence, improved herd-level testing is unlikely to reduce recurrence unless this extrinsic infectious pressure is simultaneously addressed.
Author Summary
Epidemic models are commonly used to assess the impact of alternative management strategies. The efficacy of controls is typically assumed from “expert opinion” rather than estimated from data. Managed endemic diseases such as bovine tuberculosis offer the potential to estimate the efficiency of control directly from epidemiological data. Our methodology constitutes a shift in the level of statistical rigor applied to “policy” models and offers insights into the epidemiology of Bovine tuberculosis in Great Britain. bTB continues to persist and spread relentlessly in Britain, despite extensive testing and control programs. Cattle farmers question the efficacy of cattle controls, blaming the badger wildlife reservoir. Contrary to much public perception, we demonstrate the importance of cattle-to-cattle transmission, especially in larger herds. We estimate that in the worst case scenario up to 21% of herds may be harboring infection after they clear restrictions. However, we also estimate that there is a high rate of re-introduction of infection into herds, particularly in high incidence areas. Eliminating the hidden burden of infection alone is unlikely to be sufficient to prevent recurrent breakdowns. Rather, the high rate of external infection, both through cattle movements and environmental sources, must be addressed if recurrence is to be reduced.
PMCID: PMC3475695  PMID: 23093923
20.  Quantifying Transmission of Highly Pathogenic and Low Pathogenicity H7N1 Avian Influenza in Turkeys 
PLoS ONE  2012;7(9):e45059.
Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5–2.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size.
PMCID: PMC3445558  PMID: 23028760
21.  Estimation of the Relative Sensitivity of the Comparative Tuberculin Skin Test in Tuberculous Cattle Herds Subjected to Depopulation 
PLoS ONE  2012;7(8):e43217.
Bovine tuberculosis (bTB) is one of the most serious economic animal health problems affecting the cattle industry in Great Britain (GB), with incidence in cattle herds increasing since the mid-1980s. The single intradermal comparative cervical tuberculin (SICCT) test is the primary screening test in the bTB surveillance and control programme in GB and Ireland. The sensitivity (ability to detect infected cattle) of this test is central to the efficacy of the current testing regime, but most previous studies that have estimated test sensitivity (relative to the number of slaughtered cattle with visible lesions [VL] and/or positive culture results) lacked post-mortem data for SICCT test-negative cattle. The slaughter of entire herds (“whole herd slaughters” or “depopulations”) that are infected by bTB are occasionally conducted in GB as a last-resort control measure to resolve intractable bTB herd breakdowns. These provide additional post-mortem data for SICCT test-negative cattle, allowing a rare opportunity to calculate the animal-level sensitivity of the test relative to the total number of SICCT test-positive and negative VL animals identified post-mortem (rSe). In this study, data were analysed from 16 whole herd slaughters (748 SICCT test-positive and 1031 SICCT test-negative cattle) conducted in GB between 1988 and 2010, using a Bayesian hierarchical model. The overall rSe estimate of the SICCT test at the severe interpretation was 85% (95% credible interval [CI]: 78–91%), and at standard interpretation was 81% (95% CI: 70–89%). These estimates are more robust than those previously reported in GB due to inclusion of post-mortem data from SICCT test-negative cattle.
PMCID: PMC3424237  PMID: 22927952
22.  Ebola Virus Antibodies in Fruit Bats, Ghana, West Africa 
Emerging Infectious Diseases  2012;18(7):1207-1209.
PMCID: PMC3376795  PMID: 22710257
viruses; Ebola virus; Ebolavirus sp.; Reston Ebola virus; REBOV; Zaire Ebola virus; ZEBOV; African fruit bats; Africa; Epomops franqueti; Epomophorus gambianus; Hypsignathus monstrosus; Nanonycteris veldkampii; Eidolon helvum; viruses; Ghana
23.  Evolution of an Eurasian Avian-like Influenza Virus in Naïve and Vaccinated Pigs 
PLoS Pathogens  2012;8(5):e1002730.
Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.
Author Summary
The latest human influenza pandemic highlights the ability of influenza viruses to jump species barriers and emerge in new hosts, as well as the role of pigs in generating viruses with pandemic potential. The mutational power of influenza virus, caused by intrinsically error-prone viral polymerases, has been directly linked to viral emergence, as adaptive mutations present in the reservoir host are likely to be key to the evolution of sustained transmission in new hosts. Hence, studying how mutations are generated, maintained and transmitted in and among pigs is critical to understanding how novel viruses could emerge. Here we characterized the evolution and mutational spectra of influenza virus populations within naïve and vaccinated pigs linked by natural transmission, by analyzing multiple viral sequences obtained at different times post-infection. We show that the genetic make-up of influenza viruses in pigs is highly dynamic: the frequency of particular mutations, including those that could potentially alter host specificity or result in vaccine escape, fluctuated markedly, including one rapid fixation event. We also show that co-infections are common and multiple viruses – even defective ones – were transmitted between pigs despite being vaccinated. Our results provide empirical evidence of the complex dynamics of influenza viral populations in pigs and provide insight on the evolutionary basis of RNA viral emergence.
PMCID: PMC3364949  PMID: 22693449
24.  Dynamics of Salmonella infection of macrophages at the single cell level 
Salmonella enterica causes a range of diseases. Salmonellae are intracellular parasites of macrophages, and the control of bacteria within these cells is critical to surviving an infection. The dynamics of the bacteria invading, surviving, proliferating in and killing macrophages are central to disease pathogenesis. Fundamentally important parameters, however, such as the cellular infection rate, have not previously been calculated. We used two independent approaches to calculate the macrophage infection rate: mathematical modelling of Salmonella infection experiments, and analysis of real-time video microscopy of infection events. Cells repeatedly encounter salmonellae, with the bacteria often remain associated with the macrophage for more than ten seconds. Once Salmonella encounters a macrophage, the probability of that bacterium infecting the cell is remarkably low: less than 5%. The macrophage population is heterogeneous in terms of its susceptibility to the first infection event. Once infected, a macrophage can undergo further infection events, but these reinfection events occur at a lower rate than that of the primary infection.
PMCID: PMC3427505  PMID: 22552918
Salmonella; macrophage; dynamic; infection rate; Holling's type II
25.  Factors Associated with Pleurisy in Pigs: A Case-Control Analysis of Slaughter Pig Data for England and Wales 
PLoS ONE  2012;7(2):e29655.
A case-control investigation was undertaken to determine management and health related factors associated with pleurisy in slaughter pigs in England and Wales.
The British Pig Executive Pig Health Scheme database of abattoir pathology was used to identify 121 case (>10% prevalence of pleurisy on 3 or more assessment dates in the preceding 24 months) and 121 control units (≤5% prevalence of pleurisy on 3 or more assessment dates in the preceding 24 months). Farm data were collected by postal questionnaire. Data from respondents (70 cases and 51 controls) were analysed using simple logistic regression models with Bonferroni corrections. Limited multivariate analyses were also performed to check the robustness of the overall conclusions.
Results and Conclusions
Management factors associated with increased odds of pleurisy included no all-in all-out pig flow (OR 9.3, 95% confidence interval [CI]: 3.3–29), rearing of pigs with an age difference of >1 month in the same airspace (OR 6.5 [2.8–17]) and repeated mixing (OR 2.2 [1.4–3.8]) or moving (OR 2.2 [1.5–3.4]) of pigs during the rearing phase. Those associated with decreased odds of pleurisy included filling wean-to-finish or grower-to-finish systems with piglets from ≤3 sources (OR 0.18 [0.07–0.41]) compared to farrow-to-finish systems, cleaning and disinfecting of grower (ORs 0.28 [0.13–0.61] and 0.29 [0.13–0.61]) and finisher (ORs 0.24 [0.11–0.51] and 0.2 [0.09–0.44]) accommodation between groups, and extended down time of grower and finisher accommodation (OR 0.84 [0.75–0.93] and 0.86 [0.77–0.94] respectively for each additional day of downtime). This study demonstrated the value of national-level abattoir pathology data collection systems for case control analyses and generated guidance for on-farm interventions to help reduce the prevalence of pleurisy in slaughter pigs.
PMCID: PMC3281815  PMID: 22363407

Results 1-25 (42)