Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Identification of a Neutralizing Epitope within Antigenic Domain 5 of Glycoprotein B of Human Cytomegalovirus 
Journal of Virology  2014;89(1):361-372.
Human cytomegalovirus (HCMV) is an important, ubiquitous pathogen that causes severe clinical disease in immunocompromised individuals, such as organ transplant recipients and infants infected in utero. The envelope glycoprotein B (gB) of HCMV is a major antigen for the induction of virus-neutralizing antibodies. We have begun to define target structures within gB that are recognized by virus-neutralizing antibodies. Antigenic domain 5 (AD-5) of gB has been identified as an important target for neutralizing antibodies in studies using human monoclonal antibodies (MAbs). Anti-AD-5 MAbs share a target site on gB, despite originating from different, healthy, HCMV-infected donors. Mutational analysis of AD-5 identified tyrosine 280 in combination with other surface-exposed residues (the YNND epitope) as critical for antibody binding. The YNND epitope is strictly conserved among different HCMV strains. Recombinant viruses carrying YNND mutations in AD-5 were resistant to virus-neutralizing MAbs. Competition enzyme-linked immunosorbent assays (ELISAs) with human HCMV-convalescent-phase sera from unselected donors confirmed the conserved antibody response for the YNND epitope in HCMV-infected individuals and, because a significant fraction of the gB AD-5 response was directed against the YNND epitope, further argued that this epitope is a major target of anti-AD-5 antibody responses. In addition, affinity-purified polyclonal anti-AD-5 antibodies prepared from individual sera showed reactivity to AD-5 and neutralization activity toward gB mutant viruses that were similar to those of AD-5-specific MAbs. Taken together, our data indicate that the YNND epitope represents an important target for anti-gB antibody responses as well as for anti-AD-5 virus-neutralizing antibodies.
IMPORTANCE HCMV is a major global health concern, and a vaccine to prevent HCMV disease is a widely recognized medical need. Glycoprotein B of HCMV is an important target for neutralizing antibodies and hence an interesting molecule for intervention strategies, e.g., vaccination. Mapping the target structures of neutralizing antibodies induced by naturally occurring HCMV infection can aid in defining the properties required for a protective capacity of vaccine antigens. The data presented here extend our knowledge of neutralizing epitopes within gB to include AD-5. Collectively, our data will contribute to optimal vaccine design and development of antibody-based therapies.
PMCID: PMC4301166  PMID: 25320309
2.  Control of Murine Cytomegalovirus Infection by γδ T Cells 
PLoS Pathogens  2015;11(2):e1004481.
Infections with cytomegalovirus (CMV) can cause severe disease in immunosuppressed patients and infected newborns. Innate as well as cellular and humoral adaptive immune effector functions contribute to the control of CMV in immunocompetent individuals. None of the innate or adaptive immune functions are essential for virus control, however. Expansion of γδ T cells has been observed during human CMV (HCMV) infection in the fetus and in transplant patients with HCMV reactivation but the protective function of γδ T cells under these conditions remains unclear. Here we show for murine CMV (MCMV) infections that mice that lack CD8 and CD4 αβ-T cells as well as B lymphocytes can control a MCMV infection that is lethal in RAG-1-/- mice lacking any T- and B-cells. γδ T cells, isolated from infected mice can kill MCMV infected target cells in vitro and, importantly, provide long-term protection in infected RAG-1-/- mice after adoptive transfer. γδ T cells in MCMV infected hosts undergo a prominent and long-lasting phenotypic change most compatible with the view that the majority of the γδ T cell population persists in an effector/memory state even after resolution of the acute phase of the infection. A clonotypically focused Vγ1 and Vγ2 repertoire was observed at later stages of the infection in the organs where MCMV persists. These findings add γδ T cells as yet another protective component to the anti-CMV immune response. Our data provide clear evidence that γδ T cells can provide an effective control mechanism of acute CMV infections, particularly when conventional adaptive immune mechanisms are insufficient or absent, like in transplant patient or in the developing immune system in utero. The findings have implications in the stem cell transplant setting, as antigen recognition by γδ T cells is not MHC-restricted and dual reactivity against CMV and tumors has been described.
Author Summary
Cytomegalovirus is a clinically important pathogen. While infection in hosts with a functional immune system is usually asymptomatic, the virus can cause significant morbidity and mortality in individuals with an immature or suppressed immune system. The virus causes severe clinical complication in transplant recipients and congenital CMV infections are the most common infectious cause of neurological disorders in children. Multiple layers of innate and adoptive immunity are involved in the control of CMV and single deficiencies of one immune cell type can be compensated by other immune cells. Expansions of γδ T lymphocytes, which are regarded as innate-like cells with adaptive-like potential, have been shown to be associated with CMV infections in human transplant patients and neonates. Their role in protective immunity against CMV has been unclear, however. Here we show direct evidence in the murine CMV model (MCMV) that γδ T lymphocytes can provide protection against a lethal MCMV infection in the absence of any other cells of the adoptive immune system. Upon infection, γδ T lymphocytes undergo a significant expansion and a prominent and long-lasting phenotypic change. These findings have implications for the development of new cellular therapy regimens in CMV infections in the transplant setting that should be evaluated in the future.
PMCID: PMC4450058  PMID: 25658831
3.  The immunoglobulin tail tyrosine motif upgrades memory-type BCRs by incorporating a Grb2-Btk signalling module 
Nature Communications  2014;5:5456.
The vigorous response of IgG-switched memory B cells to recurring pathogens involves enhanced signalling from their B-cell antigen receptors (BCRs). However, the molecular signal amplification mechanisms of memory-type BCRs remained unclear. Here, we identify the immunoglobulin tail tyrosine (ITT) motif in the cytoplasmic segments of membrane-bound IgGs (mIgGs) as the principle signal amplification device of memory-type BCRs in higher vertebrates and decipher its signalling microanatomy. We show that different families of protein tyrosine kinases act upstream and downstream of the ITT. Spleen tyrosine kinase (Syk) activity is required for ITT phosphorylation followed by recruitment of the adaptor protein Grb2 into the mIgG-BCR signalosome. Grb2 in turn recruits Bruton’s tyrosine kinase (Btk) to amplify BCR-induced Ca2+ mobilization. This molecular interplay of kinases and adaptors increases the antigen sensitivity of memory-type BCRs, which provides a cell-intrinsic trigger mechanism for the rapid reactivation of IgG-switched memory B cells on antigen recall.
How class-switched memory B cells signal to respond robustly to recurring pathogens is incompletely understood. Here the authors show that immunoglobulin tail tyrosine motifs in membrane-bound immunoglobulin isotypes of class-switched cells amplify signalling in memory B cells, in a mechanism that includes distinct kinases and adaptor proteins.
PMCID: PMC4263166  PMID: 25413232
4.  Structural Basis for the Recognition of Human Cytomegalovirus Glycoprotein B by a Neutralizing Human Antibody 
PLoS Pathogens  2014;10(10):e1004377.
Human cytomegalovirus (HCMV) infections are life-threating to people with a compromised or immature immune system. Upon adhesion, fusion of the virus envelope with the host cell is initiated. In this step, the viral glycoprotein gB is considered to represent the major fusogen. Here, we present for the first time structural data on the binding of an anti-herpes virus antibody and describe the atomic interactions between the antigenic domain Dom-II of HCMV gB and the Fab fragment of the human antibody SM5-1. The crystal structure shows that SM5-1 binds Dom-II almost exclusively via only two CDRs, namely light chain CDR L1 and a 22-residue-long heavy chain CDR H3. Two contiguous segments of Dom-II are targeted by SM5-1, and the combining site includes a hydrophobic pocket on the Dom-II surface that is only partially filled by CDR H3 residues. SM5-1 belongs to a series of sequence-homologous anti-HCMV gB monoclonal antibodies that were isolated from the same donor at a single time point and that represent different maturation states. Analysis of amino acid substitutions in these antibodies in combination with molecular dynamics simulations show that key contributors to the picomolar affinity of SM5-1 do not directly interact with the antigen but significantly reduce the flexibility of CDR H3 in the bound and unbound state of SM5-1 through intramolecular side chain interactions. Thus, these residues most likely alleviate unfavorable binding entropies associated with extra-long CDR H3s, and this might represent a common strategy during antibody maturation. Models of entire HCMV gB in different conformational states hint that SM5-1 neutralizes HCMV either by blocking the pre- to postfusion transition of gB or by precluding the interaction with additional effectors such as the gH/gL complex.
Author Summary
Human cytomegalovirus (HCMV) belongs to the family of β-herpes viruses. HCMV infections are not only life threatening to people with a compromised immune system but also the most common viral cause of congenital defects in newborns. Hence, the development of HCMV vaccines was ranked top priority by the US Institute of Medicine in 1999. Virtually all infected individuals develop antibodies against the envelope protein gB, which plays a crucial role in the infection process. Here, we describe the crystal structure of a fragment of the virus neutralizing antibody SM5-1 in complex with an antigenic determinant of gB, namely Dom-II. The structure shows that antigen antibody interactions are concentrated within two CDRs of SM5-1. Computational methods and an analysis of additional antibody sequences from the same lineage reveal that additional key contributions to high affinity binding are provided by residues that stiffen the extra-long CDR H3 loop without directly contacting the antigen. We suggest that the optimization of such indirect contributions represents a common and yet undervalued principle of the antibody maturation process. Furthermore our data suggest that the neutralizing effect of SM5-1 either originates from blocking membrane fusion or from preventing interaction of gB with other envelope proteins.
PMCID: PMC4192593  PMID: 25299639
5.  Characterization of a Discontinuous Neutralizing Epitope on Glycoprotein B of Human Cytomegalovirus 
Journal of Virology  2013;87(16):8927-8939.
Human cytomegalovirus (HCMV) is a ubiquitously distributed pathogen that causes severe disease in immunosuppressed patients and newborn infants infected in utero. The viral envelope glycoprotein B (gB) is an attractive molecule for active vaccination and passive immunoprophylaxis and therapy. Using human monoclonal antibodies (MAbs), we have recently identified antigenic region 4 (AD-4) on gB as an important target for neutralizing antibodies. AD-4 is formed by a discontinuous sequence comprising amino acids 121 to 132 and 344 to 438 of gB of HCMV strain AD169. To map epitopes for human antibodies on this protein domain, we used a three-dimensional (3D) model of HCMV gB to identify surface-exposed amino acids on AD-4 and selected juxtaposed residues for alanine scans. A tyrosine (Y) at position 364 and a lysine (K) at position 379 (the YK epitope), which are immediate neighbors on the AD-4 surface, were found to be essential for binding of the human MAbs. Recognition of AD-4 by sera from HCMV-infected individuals also was largely dependent on these two residues, indicating a general importance for the antibody response against AD-4. A panel of AD-4 recombinant viruses harboring mutations at the crucial antibody binding sites was generated. The viruses showed significantly reduced susceptibility to neutralization by AD-4-specific MAbs or polyclonal AD-4-specific antibodies, indicating that the YK epitope is dominant for the AD-4-specific neutralizing antibody response during infection. To our knowledge, this is the first molecular identification of a functional discontinuous epitope on HCMV gB. Induction of antibodies specific for this epitope may be a desirable goal following vaccination with gB.
PMCID: PMC3754028  PMID: 23740990
6.  Multiple Interferon Regulatory Factor and NF-κB Sites Cooperate in Mediating Cell-Type- and Maturation-Specific Activation of the Human CD83 Promoter in Dendritic Cells 
Molecular and Cellular Biology  2013;33(7):1331-1344.
CD83 is one of the best-known surface markers for fully mature dendritic cells (mature DCs), and its cell-type- and maturation-specific regulation makes the CD83 promoter an interesting tool for the genetic modulation of DCs. To determine the mechanisms regulating this DC- and maturation-specific CD83 expression, chromatin immunoprecipitation (ChIP)-on-chip microarray, biocomputational, reporter, electrophoretic mobility shift assay (EMSA), and ChIP analyses were performed. These studies led to the identification of a ternary transcriptional activation complex composed of an upstream regulatory element, a minimal promoter, and an enhancer, which have not been reported in this arrangement for any other gene so far. Notably, these DNA regions contain a complex framework of interferon regulatory factor (IRF)- and NF-κB transcription factor-binding sites mediating their arrangement. Mutation of any of the IRF-binding sites resulted in a significant loss of promoter activity, whereas overexpression of NF-κB transcription factors clearly enhanced transcription. We identified IRF-1, IRF-2, IRF-5, p50, p65, and cRel to be involved in regulating maturation-specific CD83 expression in DCs. Therefore, the characterization of this promoter complex not only contributes to the knowledge of DC-specific gene regulation but also suggests the involvement of a transcriptional module with binding sites separated into distinct regions in transcriptional activation as well as cell-type- and maturation-specific transcriptional targeting of DCs.
PMCID: PMC3624272  PMID: 23339870
7.  Surface μ Heavy Chain Signals Down-Regulation of the V(D)J-Recombinase Machinery in the Absence of Surrogate Light Chain Components 
The Journal of Experimental Medicine  2004;199(11):1523-1532.
Early B cell development is characterized by stepwise, ordered rearrangement of the immunoglobulin (Ig) heavy (HC) and light (LC) chain genes. Only one of the two alleles of these genes is used to produce a receptor, a phenomenon referred to as allelic exclusion. It has been suggested that pre–B cell receptor (pre-BCR) signals are responsible for down-regulation of the VDJH-recombinase machinery (Rag1, Rag2, and terminal deoxynucleotidyl transferase [TdT]), thereby preventing further rearrangement on the second HC allele. Using a mouse model, we show that expression of an inducible μHC transgene in Rag2−/− pro–B cells induces down-regulation of the following: (a) TdT protein, (b) a transgenic green fluorescent protein reporter reflecting endogenous Rag2 expression, and (c) Rag1 primary transcripts. Similar effects were also observed in the absence of surrogate LC (SLC) components, but not in the absence of the signaling subunit Ig-α. Furthermore, in wild-type mice and in mice lacking either λ5, VpreB1/2, or the entire SLC, the TdT protein is down-regulated in μHC+LC− pre–B cells. Surprisingly, μHC without LC is expressed on the surface of pro–/pre–B cells from λ5−/−, VpreB1−/−VpreB2−/−, and SLC−/− mice. Thus, SLC or LC is not required for μHC cell surface expression and signaling in these cells. Therefore, these findings offer an explanation for the occurrence of HC allelic exclusion in mice lacking SLC components.
PMCID: PMC2211789  PMID: 15173209
B cell development; allelic exclusion; Rag; TdT; pre-BCR
8.  Activation of Virus-specific Memory B Cells in the Absence of T Cell Help 
Humoral immunity is maintained by long-lived plasma cells, constitutively secreting antibodies, and nonsecreting resting memory B cells that are rapidly reactivated upon antigen encounter. The activation requirements for resting memory B cells, particularly the role of T helper cells, are unclear. To analyze the activation of memory B cells, mice were immunized with human cytomegalovirus, a complex human herpesvirus, and tick-born encephalitis virus, and a simple flavivirus. B cell populations devoid of Ig-secreting plasma cells were adoptively transferred into T and B cell–deficient RAG-1−/− mice. Antigenic stimulation 4–6 d after transfer of B cells resulted in rapid IgG production. The response was long lasting and strictly antigen specific, excluding polyclonal B cell activation. CD4+ T cells were not involved since (a) further depletion of CD4+ T cells in the recipient mice did not alter the antibody response and (b) recipient mice contained no detectable CD4+ T cells 90 d posttransfer. Memory B cells could not be activated by a soluble viral protein without T cell help. Transfer of memory B cells into immunocompetent animals indicated that presence of helper T cells did not enhance the memory B cell response. Therefore, our results indicate that activation of virus-specific memory B cells to secrete IgG is independent of cognate or bystander T cell help.
PMCID: PMC2211828  PMID: 14769849
antigen-specific immunity; immunological memory; B lymphocyte memory; cytomegalovirus; adoptive transfer
9.  B Cell Repertoire Analysis Identifies New Antigenic Domains on Glycoprotein B of Human Cytomegalovirus which Are Target of Neutralizing Antibodies 
PLoS Pathogens  2011;7(8):e1002172.
Human cytomegalovirus (HCMV), a herpesvirus, is a ubiquitously distributed pathogen that causes severe disease in immunosuppressed patients and infected newborns. Efforts are underway to prepare effective subunit vaccines and therapies including antiviral antibodies. However, current vaccine efforts are hampered by the lack of information on protective immune responses against HCMV. Characterizing the B-cell response in healthy infected individuals could aid in the design of optimal vaccines and therapeutic antibodies. To address this problem, we determined, for the first time, the B-cell repertoire against glycoprotein B (gB) of HCMV in different healthy HCMV seropositive individuals in an unbiased fashion. HCMV gB represents a dominant viral antigenic determinant for induction of neutralizing antibodies during infection and is also a component in several experimental HCMV vaccines currently being tested in humans. Our findings have revealed that the vast majority (>90%) of gB-specific antibodies secreted from B-cell clones do not have virus neutralizing activity. Most neutralizing antibodies were found to bind to epitopes not located within the previously characterized antigenic domains (AD) of gB. To map the target structures of these neutralizing antibodies, we generated a 3D model of HCMV gB and used it to identify surface exposed protein domains. Two protein domains were found to be targeted by the majority of neutralizing antibodies. Domain I, located between amino acids (aa) 133–343 of gB and domain II, a discontinuous domain, built from residues 121–132 and 344–438. Analysis of a larger panel of human sera from HCMV seropositive individuals revealed positivity rates of >50% against domain I and >90% against domain II, respectively. In accordance with previous nomenclature the domains were designated AD-4 (Dom II) and AD-5 (Dom I), respectively. Collectively, these data will contribute to optimal vaccine design and development of antibodies effective in passive immunization.
Author Summary
The development of antibodies is a major defense mechanism against viruses. Understanding the repertoire of antiviral antibodies induced during infection is a necessary prerequisite to defining the protective activities of an antiviral antibody response. The isolation of antigen specific memory B cells and subsequent stimulation to antibody producing cells provides a powerful tool to study the antibody repertoire in infected individuals. We have used this approach to analyze the antibody repertoire against glycoprotein B (gB) of human cytomegalovirus (HCMV), a major antigen for the induction of antiviral antibodies during infection and a constituent of experimental vaccines in humans. We find in different infected individuals that the vast majority of gB-specific B cells produce antibodies that cannot neutralize free virus. Antibodies with antiviral capacity target two domains of gB that have not been previously identified. The identification of these new antigenic domains was possible with the aid of a 3D molecular model of HCMV gB. Our results will be useful for vaccine development since comparison of the immune response after natural infection with that induced by vaccination can be readily accomplished. Moreover, neutralizing human monoclonal antibodies could constitute powerful therapeutics to combat the infection in populations at risk for HCMV disease.
PMCID: PMC3154849  PMID: 21852946
10.  Autoantibodies: Focus on anti-DNA antibodies 
Self Nonself  2011;2(1):11-18.
Ever since the days of Ehrlich and the birth of humoral immunity, self-reactivity or ‘horror autotoxicus’ as referred to by Paul Ehrlich, has been of great concern. For instance, in patients with the autoimmune disease systemic lupus erythematosus (SLE), anti-nuclear and anti-DNA antibodies have been recognized for many years. Despite this, the exact mechanism as to how the immune system fails to protect the individual and allows these autoantibodies to develop in this and other systemic autoimmune diseases remains uncertain. So how can we explain their presence? Evidence suggests that B cells expressing autoreactive antibodies do not normally arise but rather undergo negative selection as they develop. In light of this, it might seem contradictory that not all autoreactive B cell clones are eliminated, although this may not even be the intention since autoantibodies are also found in healthy individuals and may even protect from autoimmunity. Here, we will discuss autoantibodies, in particular those recognizing DNA, with regard to their reactivity and their potentially pathogenic or protective properties.
PMCID: PMC3136899  PMID: 21776330
anti-DNA antibodies; anti-nuclear antibodies; anti-nucleosome antibodies; autoantibodies; systemic autoimmunity; B cells; B cell receptors; CDR3; natural antibodies; SLE
11.  Polymorphisms in the Hsp70 gene locus are genetically associated with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2010;69(11):1983-1989.
Heat shock proteins (Hsps) play a role in the delivery and presentation of antigenic peptides and are thought to be involved in the pathogenesis of multifactorial diseases.
To investigate genes encoding cytosolic Hsp70 proteins for associations of allelic variants with systemic lupus erythematosus (SLE).
Case–control studies of two independent Caucasian SLE cohorts were performed. In a haplotype-tagging single-nucleotide polymorphism approach, common variants of HspA1L, HspA1A and HspA1B were genotyped and principal component analyses were performed for the cohort from the Oklahoma Medical Research Foundation (OMRF). Relative quantification of mRNA was carried out for each Hsp70 gene in healthy controls. Conditional regression analysis was performed to determine if allelic variants in Hsp70 act independently of HLA-DR3.
On analysis of common genetic variants of HspA1L, HspA1A and HspA1B, a haplotype significantly associated with SLE in the Erlangen-SLE cohort was identified, which was confirmed in the OMRF cohort. Depending on the cohorts, OR ranging from 1.43 to 1.88 and 2.64 to 3.16 was observed for individuals heterozygous and homozygous for the associated haplotype, respectively. Patients carrying the risk haplotype or the risk allele more often displayed autoantibodies to Ro and La in both cohorts. In healthy controls bearing this haplotype, the amount of HspA1A mRNA was significantly increased, whereas total Hsp70 protein concentration was not altered.
Allelic variants of the Hsp70 genes are significantly associated with SLE in Caucasians, independently of HLA-DR3, and correlate with the presence of autoantibodies to Ro and La. Hence, the Hsp70 gene locus appears to be involved in SLE pathogenesis.
PMCID: PMC3002760  PMID: 20498198
12.  Passive Immunization Reduces Murine Cytomegalovirus-Induced Brain Pathology in Newborn Mice▿  
Journal of Virology  2008;82(24):12172-12180.
Human cytomegalovirus (HCMV) is the most frequent cause of congenital viral infections in humans and frequently leads to long-term central nervous system (CNS) abnormalities that include learning disabilities, microcephaly, and hearing loss. The pathogenesis of the CNS infection has not been fully elucidated and may arise as a result of direct damage of CMV-infected neurons or indirectly secondary to inflammatory response to infection. We used a recently established model of mouse CMV (MCMV) infection in newborn mice to analyze the contribution of humoral immunity to virus clearance from the brain. In brains of MCMV-infected newborn mice treated with immune serum, the titer of infectious virus was reduced below detection limit, whereas in the brains of mice receiving control (nonimmune) serum significant amounts of virus were recovered. Moreover, histopathological and immunohistological analyses revealed significantly less CNS inflammation in mice treated with immune serum. Treatment with MCMV-specific monoclonal antibodies also resulted in the reduction of virus titer in the brain. Recipients of control serum or irrelevant antibodies had more viral foci, marked mononuclear cell infiltrates, and prominent glial nodules in their brains than mice treated with immune serum or MCMV-specific antibodies. In conclusion, our data indicate that virus-specific antibodies have a protective role in the development of CNS pathology in MCMV-infected newborn mice, suggesting that antiviral antibodies may be an important component of protective immunological responses during CMV infection of the developing CNS.
PMCID: PMC2593357  PMID: 18842707
13.  A Transgenic Marker for Mouse B Lymphoid Precursors 
Three lines of transgenic mice have been generated which express human CD25 under the control of the 722-base pair region located immediately 5′ of the precursor (pre)–B cell–specific λ5 gene. All three strains express human CD25 in parallel to endogenous λ5 on pre–B cells, but not on mature B lymphocytes or other blood cell lineages. High expression of human CD25 on B lineage cells of transgenic mice has allowed the identification of a new B220+CD19−λ5+ precursor of the B220+CD19+λ5+ c-kit+ pre-BI cells. Both types of precursors are clonable on stromal cells in the presence of interleukin-7. The CD19− precursors have a sizeable part of their immunoglobulin heavy chain gene loci in germline configuration, while the CD19+ pre–BI cells are predominantly DJH rearranged. The results indicate that random integration of the 722-bp 5′ region of the λ5 gene into the mouse genome confers tissue and differentiation stage–specific expression of a transgene.
PMCID: PMC2196144  PMID: 9034144

Results 1-13 (13)