PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
author:("wilting, Jens")
1.  Differential Sialylation of Serpin A1 in the Early Diagnosis of Parkinson’s Disease Dementia 
PLoS ONE  2012;7(11):e48783.
The prevalence of Parkinson’s disease (PD) increases with age. Up to 50% of PD show cognitive decline in terms of a mild cognitive impairment already in early stages that predict the development of dementia, which can occur in up to 80% of PD patients over the long term, called Parkinson’s disease dementia (PDD). So far, diagnosis of PD/PDD is made according to clinical and neuropsychological examinations while laboratory data is only used for exclusion of other diseases. The aim of this study was the identification of possible biomarkers in cerebrospinal fluid (CSF) of PD, PDD and controls (CON) which predict the development of dementia in PD. For this, a proteomic approach optimized for CSF was performed using 18 clinically well characterized patients in a first step with subsequent validation using 84 patients. Here, we detected differentially sialylated isoforms of Serpin A1 as marker for differentiation of PD versus PDD in CSF. Performing 2D-immunoblots, all PDD patients could be identified correctly (sensitivity 100%). Ten out of 24 PD patients showed Serpin A1 isoforms in a similar pattern like PDD, indicating a specificity of 58% for the test-procedure. In control samples, no additional isoform was detected. On the basis of these results, we conclude that differentially sialylated products of Serpin A1 are an interesting biomarker to indicate the development of a dementia during the course of PD.
doi:10.1371/journal.pone.0048783
PMCID: PMC3493604  PMID: 23144969
2.  Neurochemical biomarkers in Alzheimer’s disease and related disorders 
Neurochemical biomarkers for diagnosing dementias are currently under intensive investigation and the field is rapidly expanding. The main protagonists and the best defined among them are cerebrospinal fluid levels of Aβ42, tau and its phosphorylated forms (p-tau). In addition, novel cerebrospinal fluid biomarkers are emerging and their multiparametric assessment seems most promising for increasing the accuracy in neurochemical dementia diagnostics. The combined assessment of Aβ42 and p-tau has recently shown value for diagnosing prodromal states of Alzheimer’s dementia, that is, mild cognitive impairment. Disease-specific biomarkers for other degenerative dementias are still missing, but some progress has recently been made. As lumbar puncture is an additional burden for the patient, blood-based neurochemical biomarkers are definitely warranted and promising new discoveries have been made in this direction. These diagnostic developments have implicit therapeutic consequences and give rise to new requirements for future neurochemical dementia diagnostics.
doi:10.1177/1756285612455367
PMCID: PMC3487531  PMID: 23139704
Alzheimer’s disease; biomarker; blood; cerebrospinal fluid; dementia
3.  The release of IL-31 and IL-13 after nasal allergen challenge and their relation to nasal symptoms 
Background
IL-31, a recently discovered member of the gp130/IL-6 cytokine family, is mainly expressed by human mast cells and T helper type 2 cells. IL-31 is a key trigger of atopic dermatitis. Recent studies also suggest a role of IL-31 in the pathogenesis of other allergic diseases including allergic rhinitis. In the present study we studied the release of IL-31 and IL-13 in allergen-challenged allergic rhinitis patients.
Methods
Seven seasonal allergic volunteers underwent unilateral nasal provocation with allergen (and a control challenge) with the disc method out of the allergy season. Nasal symptom scores (rhinorrhea, itching, sneezing, obstruction) and bilateral nasal secretions were quantified before and after allergen provocation. IL-13 and IL-31 in nasal secretions and serum were measured by electrochemiluminescent immunoassay or ELISA, respectively.
Results
Nasal allergen challenge induced the typical clinical symptoms and physiological changes. IL-31 and IL-13 in nasal secretions increased in four and five, respectively, volunteers at 5 h after allergen but not after control challenge. We observed correlation trends between nasal IL-31 concentrations and IL-13 concentrations (r = 0.9, p = 0.002), and IL-31 contents and symptom scores (r = 0.9, p = 0.013) 5 h after allergen provocation. No IL-31 could be detected contralaterally or systemically in the sera.
Conclusions
The observed local upregulation of IL-31 mainly during the late phase reaction after nasal allergen challenge suggests a role of IL-31 in allergic rhinitis. In which way IL-31 modulates the inflammatory reaction and type 2 responses in allergic rhinitis remains to be investigated.
doi:10.1186/2045-7022-2-13
PMCID: PMC3509028  PMID: 22853438
Nasal allergen; Nasal secretion; IL-13; IL-31; Kinetics
4.  Cerebrospinal fluid amyloid-β 2-42 is decreased in Alzheimer’s, but not in frontotemporal dementia 
Journal of Neural Transmission  2012;119(7):805-813.
Alzheimer’s dementia (AD) and frontotemporal dementias (FTD) are common and their clinical differential diagnosis may be complicated by overlapping symptoms, which is why biomarkers may have an important role to play. Cerebrospinal fluids (CSF) Aβ2-42 and 1-42 have been shown to be similarly decreased in AD, but 1-42 did not display sufficient specificity for exclusion of other dementias from AD. The objective of the present study was to clarify the diagnostic value of Aβ2-42 peptides for the differential diagnosis of AD from FTD. For this purpose, 20 non-demented disease controls (NDC), 22 patients with AD and 17 with FTD were comparatively analysed by a novel sequential aminoterminally and carboxyterminally specific immunoprecipitation protocol with subsequent Aβ-SDS-PAGE/immunoblot, allowing the quantification of peptides 1-38ox, 2-40 and 2-42 along with Aβ 1-37, 1-38, 1-39, 1-40, 1-40ox and 1-42. CSF Aβ1-42 was decreased in AD as compared to NDC, but not to FTD. In a subgroup of the patients analyzed, the decrease of Abeta2-42 in AD was evident as compared to both NDC and FTD. Aβ1-38 was decreased in FTD as compared to NDC and AD. For differentiating AD from FTD, Aβ1-42 demonstrated sufficient diagnostic accuracies only when combined with Aβ1-38. Aβ2-42 yielded diagnostic accuracies of over 85 % as a single marker. These accuracy figures could be improved by combining Aβ2-42 to Aβ1-38. Aβ2-42 seems to be a promising biomarker for differentiating AD from other degenerative dementias, such as FTD.
doi:10.1007/s00702-012-0801-3
PMCID: PMC3605494  PMID: 22527776
Alzheimer’s dementia; Frontotemporal dementia; Cerebrospinal fluid; Aminoterminally truncated; Amyloid-β peptides; Aβ2-42
5.  The mechanism of γ-Secretase dysfunction in familial Alzheimer disease 
The EMBO Journal  2012;31(10):2261-2274.
The mechanism of γ-Secretase dysfunction in familial Alzheimer disease
Mutations in presenilin (PSEN) and amyloid precursor protein (APP) cause dominant early-onset Alzheimer's disease (AD), but the mechanism involved is debated. Here, such mutations are shown to alter γ-secretase activity, leading to changes in Aβ peptide cleavage patterns.
The mechanisms by which mutations in the presenilins (PSEN) or the amyloid precursor protein (APP) genes cause familial Alzheimer disease (FAD) are controversial. FAD mutations increase the release of amyloid β (Aβ)42 relative to Aβ40 by an unknown, possibly gain-of-toxic-function, mechanism. However, many PSEN mutations paradoxically impair γ-secretase and ‘loss-of-function' mechanisms have also been postulated. Here, we use kinetic studies to demonstrate that FAD mutations affect Aβ generation via three different mechanisms, resulting in qualitative changes in the Aβ profiles, which are not limited to Aβ42. Loss of ɛ-cleavage function is not generally observed among FAD mutants. On the other hand, γ-secretase inhibitors used in the clinic appear to block the initial ɛ-cleavage step, but unexpectedly affect more selectively Notch than APP processing, while modulators act as activators of the carboxypeptidase-like (γ) activity. Overall, we provide a coherent explanation for the effect of different FAD mutations, demonstrating the importance of qualitative rather than quantitative changes in the Aβ products, and suggest fundamental improvements for current drug development efforts.
doi:10.1038/emboj.2012.79
PMCID: PMC3364747  PMID: 22505025
Alzheimer; amyloid; FAD mutations; γ-secretase; presenilin
7.  The Effects of Acute Tryptophan Depletion on Reactive Aggression in Adults with Attention-Deficit/Hyperactivity Disorder (ADHD) and Healthy Controls 
PLoS ONE  2012;7(3):e32023.
Background
The neurotransmitter serotonin (5-HT) has been linked to the underlying neurobiology of aggressive behavior, particularly with evidence from studies in animals and humans. However, the underlying neurobiology of aggression remains unclear in the context of attention-deficit/hyperactivity disorder (ADHD), a disorder known to be associated with aggression and impulsivity. We investigated the effects of acute tryptophan depletion (ATD), and the resulting diminished central nervous serotonergic neurotransmission, on reactive aggression in healthy controls and adults with ADHD.
Methodology/Principal Findings
Twenty male patients with ADHD and twenty healthy male controls were subjected to ATD with an amino acid (AA) beverage that lacked tryptophan (TRP, the physiological precursor of 5-HT) and a TRP-balanced AA beverage (BAL) in a double-blind, within-subject crossover-study over two study days. We assessed reactive aggression 3.25 hours after ATD/BAL intake using a point-subtraction aggression game (PSAG) in which participants played for points against a fictitious opponent. Point subtraction was taken as a measure for reactive aggression. Lowered rates of reactive aggression were found in the ADHD group under ATD after low provocation (LP), with controls showing the opposite effect. In patients with ADHD, trait-impulsivity was negatively correlated with the ATD effect on reactive aggression after LP. Statistical power was limited due to large standard deviations observed in the data on point subtraction, which may limit the use of this particular paradigm in adults with ADHD.
Conclusions/Significance
Together with previous findings, the data provide preliminary evidence of an inverse association between trait-impulsivity and the ATD effect on reactive aggression after LP (as assessed by the PSAG) in patients with ADHD and that this relationship can be found in both adolescents and adults. Because of limited statistical power larger sample sizes are needed to find main effects of ATD/BAL administration on reactive aggression in adults with ADHD.
doi:10.1371/journal.pone.0032023
PMCID: PMC3303767  PMID: 22431971
8.  Evidence for Elevated Cerebrospinal Fluid ERK1/2 Levels in Alzheimer Dementia 
Cerebrospinal fluid (CSF) samples from 33 patients with Alzheimer dementia (AD), 21 patients with mild cognitive impairment who converted to AD during followup (MCI-AD), 25 patients with stable mild cognitive impairment (MCI-stable), and 16 nondemented subjects (ND) were analyzed with a chemiluminescence immunoassay to assess the levels of the mitogen-activated protein kinase ERK1/2 (extracellular signal-regulated kinase 1/2). The results were evaluated in relation to total Tau (tTau), phosphorylated Tau (pTau), and beta-amyloid 42 peptide (Aβ42). CSF-ERK1/2 was significantly increased in the AD group as compared to stable MCI patients and the ND group. Western blot analysis of a pooled cerebrospinal fluid sample revealed that both isoforms, ERK1 and ERK2, and low amounts of doubly phosphorylated ERK2 were detectable. As a predictive diagnostic AD biomarker, CSF-ERK1/2 was inferior to tTau, pTau, and Aβ42.
doi:10.4061/2011/739847
PMCID: PMC3227514  PMID: 22145083
10.  Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated 
Background
Retrograde transport of several transmembrane proteins from endosomes to the trans-Golgi network (TGN) occurs via Rab 5-containing endosomes, mediated by clathrin and the recently characterized retromer complex. This complex and one of its putative sorting receptor components, SorLA, were reported to be associated to late onset Alzheimer's disease (AD). The pathogenesis of this neurodegenerative disorder is still elusive, although accumulation of amyloidogenic Abeta is a hallmark. This peptide is generated from the sucessive β- and γ- secretase proteolysis of the Alzheimer's amyloid precursor protein (APP), events which are associated with endocytic pathway compartments. Therefore, APP targeting and time of residence in endosomes would be predicted to modulate Abeta levels. However, the formation of an APP- and retromer-containing protein complex with potential functions in retrieval of APP from the endosome to the TGN had, to date, not been demonstrated directly. Further, the motif(s) in APP that regulate its sorting to the TGN have not been characterized.
Results
Through the use of APP-GFP constructs, we show that APP containing endocytic vesicles targeted for the TGN, are also immunoreactive for clathrin-, Rab 5- and VPS35. Further, they frequently generate protruding tubules near the TGN, supporting an association with a retromer-mediated pathway. Importantly, we show for the first time, that mimicking APP phosphorylation at S655, within the APP 653YTSI656 basolateral motif, enhances APP retrieval via a retromer-mediated process. The phosphomimetic APP S655E displays decreased APP lysosomal targeting, enhanced mature half-life, and decreased tendency towards Abeta production. VPS35 downregulation impairs the phosphorylation dependent APP retrieval to the TGN, and decreases APP half-life.
Conclusions
We reported for the first time the importance of APP phosphorylation on S655 in regulating its retromer-mediated sorting to the TGN or lysosomes. Significantly, the data are consistent with known interactions involving the retromer, SorLA and APP. Further, these findings add to our understanding of APP targeting and potentially contribute to our knowledge of sporadic AD pathogenesis representing putative new targets for AD therapeutic strategies.
doi:10.1186/1750-1326-5-40
PMCID: PMC2994555  PMID: 20937087
11.  Phagocytosis and LPS alter the maturation state of β-amyloid precursor protein and induce different Aβ peptide release signatures in human mononuclear phagocytes 
Background
The classic neuritic β-amyloid plaque of Alzheimer's disease (AD) is typically associated with activated microglia and neuroinflammation. Similarly, cerebrovascular β-amyloid (Aβ) deposits are surrounded by perivascular macrophages. Both observations indicate a contribution of the mononuclear phagocyte system to the development of β-amyloid.
Methods
Human CD14-positive mononuclear phagocytes were isolated from EDTA-anticoagulated blood by magnetic activated cell sorting. After a cultivation period of 72 hours in serum-free medium we assessed the protein levels of amyloid precursor protein (APP) as well as the patterns and the amounts of released Aβ peptides by ELISA or one-dimensional and two-dimensional urea-based SDS-PAGE followed by western immunoblotting.
Results
We observed strong and significant increases in Aβ peptide release upon phagocytosis of acetylated low density lipoprotein (acLDL) or polystyrene beads and also after activation of the CD14/TLR4 pathway by stimulation with LPS. The proportion of released N-terminally truncated Aβ variants was increased after stimulation with polystyrene beads and acLDL but not after stimulation with LPS. Furthermore, strong shifts in the proportions of single Aβ1-40 and Aβ2-40 variants were detected resulting in a stimulus-specific Aβ signature. The increased release of Aβ peptides was accompanied by elevated levels of full length APP in the cells. The maturation state of APP was correlated with the release of N-terminally truncated Aβ peptides.
Conclusions
These findings indicate that mononuclear phagocytes potentially contribute to the various N-truncated Aβ variants found in AD β-amyloid plaques, especially under neuroinflammatory conditions.
doi:10.1186/1742-2094-7-59
PMCID: PMC2958903  PMID: 20929546
12.  cNEUPRO: Novel Biomarkers for Neurodegenerative Diseases 
“clinical NEUroPROteomics of neurodegenerative diseases” (cNEUPRO) is a Specific Targeted Research Project (STREP) within the sixth framework program of the European Commission dedicated to the search for novel biomarker candidates for Alzheimer's disease and other neurodegenerative diseases. The ultimate goal of cNEUPRO is to identify one or more valid biomarker(s) in blood and CSF applicable to support the early and differential diagnosis of dementia disorders. The consortium covers all steps required for the discovery of novel biomarker candidates such as acquisition of high quality CSF and blood samples from relevant patient groups and controls, analysis of body fluids by various methods, and finally assay development and assay validation. Here we report the standardized procedures for diagnosis and preanalytical sample-handling within the project, as well as the status of the ongoing research activities and some first results.
doi:10.4061/2010/548145
PMCID: PMC2945639  PMID: 20886057
13.  Combined Analysis of CSF Tau, Aβ42, Aβ1–42% and Aβ1–40ox% in Alzheimer's Disease, Dementia with Lewy Bodies and Parkinson's Disease Dementia 
We studied the diagnostic value of CSF Aβ42/tau versus low Aβ1–42% and high Aβ1–40ox% levels for differential diagnosis of Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), respectively. CSF of 45 patients with AD, 15 with DLB, 21 with Parkinson's disease dementia (PDD), and 40 nondemented disease controls (NDC) was analyzed by Aβ-SDS-PAGE/immunoblot and ELISAs (Aβ42 and tau). Aβ42/tau lacked specificity in discriminating AD from DLB and PDD. Best discriminating biomarkers were Aβ1–42% and Aβ1–40ox% for AD and DLB, respectively. AD and DLB could be differentiated by both Aβ1–42% and Aβ1–40ox% with an accuracy of 80% at minimum. Thus, we consider Aβ1–42% and Aβ1–40ox% to be useful biomarkers for AD and DLB, respectively. We propose further studies on the integration of Aβ1–42% and Aβ1–40ox% into conventional assay formats. Moreover, future studies should investigate the combination of Aβ1–40ox% and CSF alpha-synuclein for the diagnosis of DLB.
doi:10.4061/2010/761571
PMCID: PMC2938459  PMID: 20862375
14.  Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease, and shows evidence for additional susceptibility genes 
Harold, Denise | Abraham, Richard | Hollingworth, Paul | Sims, Rebecca | Gerrish, Amy | Hamshere, Marian | Singh Pahwa, Jaspreet | Moskvina, Valentina | Dowzell, Kimberley | Williams, Amy | Jones, Nicola | Thomas, Charlene | Stretton, Alexandra | Morgan, Angharad | Lovestone, Simon | Powell, John | Proitsi, Petroula | Lupton, Michelle K | Brayne, Carol | Rubinsztein, David C. | Gill, Michael | Lawlor, Brian | Lynch, Aoibhinn | Morgan, Kevin | Brown, Kristelle | Passmore, Peter | Craig, David | McGuinness, Bernadette | Todd, Stephen | Holmes, Clive | Mann, David | Smith, A. David | Love, Seth | Kehoe, Patrick G. | Hardy, John | Mead, Simon | Fox, Nick | Rossor, Martin | Collinge, John | Maier, Wolfgang | Jessen, Frank | Schürmann, Britta | van den Bussche, Hendrik | Heuser, Isabella | Kornhuber, Johannes | Wiltfang, Jens | Dichgans, Martin | Frölich, Lutz | Hampel, Harald | Hüll, Michael | Rujescu, Dan | Goate, Alison | Kauwe, John S.K. | Cruchaga, Carlos | Nowotny, Petra | Morris, John C. | Mayo, Kevin | Sleegers, Kristel | Bettens, Karolien | Engelborghs, Sebastiaan | De Deyn, Peter | van Broeckhoven, Christine | Livingston, Gill | Bass, Nicholas J. | Gurling, Hugh | McQuillin, Andrew | Gwilliam, Rhian | Deloukas, Panagiotis | Al-Chalabi, Ammar | Shaw, Christopher E. | Tsolaki, Magda | Singleton, Andrew | Guerreiro, Rita | Mühleisen, Thomas W. | Nöthen, Markus M. | Moebus, Susanne | Jöckel, Karl-Heinz | Klopp, Norman | Wichmann, H-Erich | Carrasquillo, Minerva M. | Pankratz, V. Shane | Younkin, Steven G. | Holmans, Peter | O'Donovan, Michael | Owen, Michael J. | Williams, Julie
Nature genetics  2009;41(10):1088-1093.
We undertook a two-stage genome-wide association study of Alzheimer's disease involving over 16,000 individuals. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the APOE locus (most significant SNP: rs2075650, p= 1.8×10−157) and observed genome-wide significant association with SNPs at two novel loci: rs11136000 in the CLU or APOJ gene (p= 1.4×10−9) and rs3851179, a SNP 5′ to the PICALM gene (p= 1.9×10−8). Both novel associations were supported in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with AD in the combined dataset (rs11136000: p= 8.5×10−10, odds ratio= 0.86; rs3851179: p= 1.3×10−9, odds ratio= 0.86). We also observed more variants associated at p< 1×10−5 than expected by chance (p=7.5×10−6), including polymorphisms at the BIN1, DAB1 and CR1 loci.
doi:10.1038/ng.440
PMCID: PMC2845877  PMID: 19734902
15.  γ-Secretase Heterogeneity in the Aph1 Subunit: Relevance for Alzheimer’s Disease 
Science (New York, N.Y.)  2009;324(5927):639-642.
The γ-secretase complex plays a role in Alzheimer’s disease (AD) and cancer progression. The development of clinical useful inhibitors, however, is complicated by the role of the γ-secretase complex in regulated intramembrane proteolysis of Notch and other essential proteins. Different γ-secretase complexes containing different Presenilin or Aph1 protein subunits are present in various tissues. Here we show that these complexes have heterogeneous biochemical and physiological properties. Specific inactivation of the Aph1B γ-secretase in a murine Alzheimer’s disease model led to improvements of Alzheimer’s disease-relevant phenotypic features without any Notch-related side effects. The Aph1B complex contributes to total γ-secretase activity in the human brain, thus specific targeting of Aph1B-containing γ-secretase complexes may be helpful in generating less toxic therapies for Alzheimer’s disease.
doi:10.1126/science.1171176
PMCID: PMC2740474  PMID: 19299585
16.  Antidepressant drugs modulate growth factors in cultured cells 
BMC Pharmacology  2008;8:6.
Background
Different classes of antidepressant drugs are used as a treatment for depression by activating the catecholinergic system. In addition, depression has been associated with decrease of growth factors, which causes insufficient axonal sprouting and reduced neuronal damage repair. In this study, antidepressant treatments are analyzed in a cell culture system, to study the modulation of growth factors.
Results
We quantified the transcription of several growth factors in three cell lines after application of antidepressant drugs by real time polymerase chain reaction. Antidepressant drugs counteracted against phorbolester-induced deregulation of growth factors in PMA-differentiated neuronal SY5Y cells. We also found indications in a pilot experiment that magnetic stimulation could possibly modify BDNF in the cell culture system.
Conclusion
The antidepressant effects antidepressant drugs might be explained by selective modulation of growth factors, which subsequently affects neuronal plasticity.
doi:10.1186/1471-2210-8-6
PMCID: PMC2275236  PMID: 18318898
17.  Unchanged Survival Rates of 14-3-3γ Knockout Mice after Inoculation with Pathological Prion Protein 
Molecular and Cellular Biology  2005;25(4):1339-1346.
The diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) is based on typical clinical findings and is supported by a positive 14-3-3 Western blot of cerebrospinal fluid. However, it is not clear whether 14-3-3 indicates general neuronal damage or is of pathophysiological relevance in CJD. The fact that the 14-3-3 isoform spectrum in cerebrospinal fluid does not correspond to that found in the brain points to a regulated process. To investigate a possible role of 14-3-3 proteins in transmissible spongiform diseases, we generated a 14-3-3γ-deficient mutant mouse line by using a classical knockout strategy. The anatomy and cage behavior of the mutant mice were normal. Western blot analyses of brain homogenates revealed no changes in the protein expression of other 14-3-3 isoforms (ɛ, β, ζ, and η). Proteomic analyses of mouse brains by two-dimensional differential gel electrophoresis showed that several proteins, including growth hormone, 1-Cys peroxiredoxin, CCT-zeta, glucose-6-phosphate isomerase, GRP170 precursor, and α-SNAP, were differentially expressed. Mutant and wild-type mice were inoculated either intracerebrally or intraperitoneally with the Rocky Mountain Laboratory strain of scrapie, but no differences were detected in the postinoculation survival rates. These results indicate that 14-3-3γ is unlikely to play a causal role in CJD and related diseases.
doi:10.1128/MCB.25.4.1339-1346.2005
PMCID: PMC547999  PMID: 15684385
18.  Diagnosis of Creutzfeldt-Jakob disease by measurement of S100 protein in serum: prospective case-control study 
BMJ : British Medical Journal  1998;316(7131):577-582.
Objective: To analyse serum concentrations of brain specific S100 protein in patients with Creutzfeldt-Jakob disease and in controls.
Design: Prospective case-control study.
Setting: National Creutzfeldt-Jakob disease surveillance unit.
Subjects: 224 patients referred to the surveillance unit with suspected Creutzfeldt-Jakob disease and 35 control patients without dementia.
Main outcome measure: Serum concentration of S100 protein in patients with Creutzfeldt-Jakob disease, in patients with other diseases causing dementia, and in the control group.
Results: Of the 224 patients with suspected Creutzfeldt-Jakob disease, 65 were classed as definitely having the disease after neuropathological verification, an additional 6 were classed as definitely having the disease as a result of a genetic mutation, 43 as probably having the disease, 36 as possibly having the disease, and 74 patients were classed as having other disease. In the 108 patients classed as definitely or probably having Creutzfeldt-Jakob disease the median serum concentration of S100 was 395 pg/ml (SD 387 pg/ml). This was significantly higher than concentrations found in the 74 patients classed as having other diseases (median 109 pg/ml; SD 177 pg/ml; P=0.0001). At a cut off point of 213 pg/ml sensitivity for the diagnosis of the disease was 77.8% (95% confidence interval 68.8% to 85.2%) and specificity was 81.1% (70.3% to 89.3%). There was a significant difference in survival at different concentrations of S100 in Kaplan-Meier curves (P=0.023).
Conclusion: Measurement of serum concentrations of S100 is a valuable tool which can be used more easily than tests on cerebrospinal fluid in the differential diagnosis of Creutzfeldt-Jakob disease. More studies are needed to determine whether serial testing of serum S100 improves diagnostic accuracy.
Key messages Creutzfeldt-Jakob disease is a rare, fatal neurodegenerative disease. Diagnosis is made clinically and neuropathologically There is no serum test which allows the diagnosis to be made while the patient is alive In this study raised serum concentrations of S100 protein were found in patients with Creutzfeldt-Jakob disease Serum concentrations of S100 could be used with a sensitivity of 77.8% and a specificity of 81.1% to confirm Creutzfeldt-Jakob disease in the differential diagnosis of diseases that cause dementia Serial measurement of S100 concentrations will enhance diagnostic accuracy
PMCID: PMC28459  PMID: 9518907

Results 1-18 (18)