PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Multi-Vitamins, Folate, and Green Vegetables Protect Against Gene Promoter Methylation in the Aerodigestive Tract of Smokers 
Cancer research  2010;70(2):568-574.
The detection of gene promoter hypermethylation in sputum is a promising molecular marker for early lung cancer detection. Epidemiologic studies suggest that dietary fruits and vegetables and the micronutrients they contain may reduce risk of lung cancer. This investigation evaluated whether diet and multi-vitamin use influence the prevalence for gene methylation in the cells exfoliated from the aerodigestive tract of current and former smokers. Members (n = 1101) of the Lovelace Smokers Cohort completed the Harvard Food Frequency Questionnaire and provided a sputum sample that was assessed for promoter methylation of eight genes commonly silenced in lung cancer and associated with risk for this disease. Methylation status was categorized as low (< 2 genes methylated) or high (≥2 genes methylated). Logistic regression models were used to identify associations between methylation status and 21 dietary variables hypothesized to affect the acquisition of gene methylation. Significant protection against methylation was observed for leafy green vegetables (OR = 0.83 per 12 monthly servings, CI: 0.74, 0.93) and folate (OR = 0.84 per 750 mcg/day, CI: 0.72, 0.99). Protection against gene methylation was also seen with current use of multi-vitamins (OR = 0.57, CI: 0.40, 0.83). This is the first cohort-based study to identify dietary factors associated with reduced promoter methylation in cells exfoliated from the airway epithelium of smokers. Novel interventions to prevent lung cancer should be developed based on the ability of diet and dietary supplements to affect reprogramming of the epigenome.
doi:10.1158/0008-5472.CAN-09-3410
PMCID: PMC3076796  PMID: 20068159
gene methylation; folate; multi-vitamins; green vegetables; smokers
2.  Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation 
Cancer research  2008;68(8):3049-3056.
Gene promoter hypermethylation in sputum is a promising biomarker for predicting lung cancer. Identifying factors that predispose smokers to methylation of multiple gene promoters in the lung could impact strategies for early detection and chemoprevention. This study evaluated the hypothesis that double-strand break repair capacity and sequence variation in genes in this pathway are associated with a high methylation index in a cohort of current and former cancer-free smokers. A 50% reduction in the mean level of double-strand break repair capacity was seen in lymphocytes from smokers with a high methylation index, defined as ≥ 3 of 8 genes methylated in sputum, compared to smokers with no genes methylated. The classification accuracy for predicting risk for methylation was 88%. Single nucleotide polymorphisms within the MRE11A, CHEK2, XRCC3, DNA-Pkc, and NBN DNA repair genes were highly associated with the methylation index. A 14.5-fold increased odds for high methylation was seen for persons with ≥ 7 risk alleles of these genes. Promoter activity of the MRE11A gene that plays a critical role in recognition of DNA damage and activation of ATM was reduced in persons with the risk allele. Collectively, ours is the first population-based study to identify double-strand break DNA repair capacity and specific genes within this pathway as critical determinants for gene methylation in sputum, that is, in turn, associated with elevated risk for lung cancer.
doi:10.1158/0008-5472.CAN-07-6344
PMCID: PMC2483467  PMID: 18413776
promoter methylation; DNA double strand break; single nucleotide polymorphism; DNA repair capacity; association study

Results 1-2 (2)