PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Measuring the Successes and Deficiencies of Constant pH Molecular Dynamics: A Blind Prediction Study 
Proteins  2011;79(12):3381-3388.
A constant pH molecular dynamics method has been used in the blind prediction of pKa values of titratable residues in wild type and mutated structures of the Staphylococcal nuclease (SNase) protein. The predicted values have been subsequently compared to experimental values provided by the laboratory of García-Moreno. CpHMD performs well in predicting the pKa of solvent-exposed residues. For residues in the protein interior, the CpHMD method encounters some difficulties in reaching convergence and predicting the pKa values for residues having strong interactions with neighboring residues. These results show the need to accurately and sufficiently sample conformational space in order to obtain pKa values consistent with experimental results.
doi:10.1002/prot.23136
PMCID: PMC3227005  PMID: 22072520
2.  Measuring the successes and deficiencies of constant pH molecular dynamics: A blind prediction study 
Proteins  2011;79(12):3381-3388.
A constant pH molecular dynamics method has been used in the blind prediction of pKa values of titratable residues in wild type and mutated structures of the Staphylococcal nuclease (SNase) protein. The predicted values have been subsequently compared to experimental values provided by the laboratory of García-Moreno. CpHMD performs well in predicting the pKa of solvent-exposed residues. For residues in the protein interior, the CpHMD method encounters some difficulties in reaching convergence and predicting the pKa values for residues having strong interactions with neighboring residues. These results show the need to accurately and sufficiently sample conformational space in order to obtain pKa values consistent with experimental results.
doi:10.1002/prot.23136
PMCID: PMC3227005  PMID: 22072520
constant pH molecular dynamics (CpHMD); pKa prediction; implicit salvation; Monte Carlo
3.  Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs 
PLoS Computational Biology  2013;9(12):e1003395.
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.
Author Summary
Drug resistance has recently entered into media conversations through the lens of MRSA (methicillin-resistant Staphylococcus aureus) infections, but conventional therapies are also failing to address resistance in cases of malaria and other bacterial infections, such as tuberculosis. To address these problems, we must develop new antibacterial and antimalarial medications. Our research focuses on understanding the structure and dynamics of IspH, an enzyme whose function is necessary for the survival of most bacteria and malaria-causing protozoans. Using computer simulations, we track how the structure of IspH changes in the presence and absence of its natural substrate. By inspecting the pockets that form in the normal motions of IspH, we propose a couple new routes by which new molecules may be developed to disrupt the function of IspH. It is our hope that these structural studies may be precursors to the development of novel therapies that may add to our current arsenal against bacterial and malarial infections.
doi:10.1371/journal.pcbi.1003395
PMCID: PMC3868525  PMID: 24367248
4.  From Zn to Mn: The Study of Novel Manganese-binding Groups in the Search for New Drugs against Tuberculosis 
Chemical Biology & Drug Design  2011;77(2):117-123.
In most eubacteria, apicomplexans, and most plants, including the causal agents for diseases such as malaria, leprosy, and tuberculosis, the methylerythritol phosphate pathway is the route for the biosynthesis of the C5 precursors to the essential isoprenoid class of compounds. Owing to their absence in humans, the enzymes of the methylerythritol phosphate pathway have become attractive targets for drug discovery. This work investigates a new class of inhibitors against the second enzyme of the pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Inhibition of this enzyme may involve the chelation of a crucial active site Mn ion, and the metal-chelating moieties studied here have previously been shown to be successful in application to the zinc-dependent metalloproteinases. Quantum mechanics and docking calculations presented in this work suggest the transferability of these metal-chelating compounds to Mn-containing 1-deoxy-d-xylulose 5-phosphate reductoisomerase enzyme, as a promising starting point to the development of potent inhibitors.
doi:10.1111/j.1747-0285.2010.01060.x
PMCID: PMC3073702  PMID: 21266015
drug design; drug discovery; molecular modeling; structure-based
5.  From Zn to Mn: The Study of Novel Manganese-Binding Groups in the Search for New Drugs against Tuberculosis 
Chemical biology & drug design  2011;77(2):117-123.
In most eubacteria, apicomplexans, and most plants, including the causal agents for diseases such as malaria, leprosy and tuberculosis, the methylerythritol phosphate pathway is the route for the biosynthesis of the C5 precursors to the essential isoprenoid class of compounds. Owing to their absence in humans, the enzymes of the methylerythritol phosphate pathway have become attractive targets for drug discovery. This work investigates a new class of inhibitors against the second enzyme of the pathway, 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (MtDXR). Inhibition of this enzyme may involve the chelation of a crucial active site Mn ion, and the metal chelating moieties studied here have previously been shown to be successful in application to the zinc-dependent metalloproteinases. Quantum mechanics and docking calculations presented in this work suggest the transferability of these metal chelating compounds to Mn-containing MtDXR enzyme, as a promising starting point to the development of potent inhibitors.
doi:10.1111/j.1747-0285.2010.01060.x
PMCID: PMC3073702  PMID: 21266015
6.  Conformational Dynamics of the Flexible Catalytic Loop in Mycobacterium tuberculosis 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase 
Chemical biology & drug design  2009;73(1):26-38.
In mycobacteria, the biosynthesis of the precursors to the essential isoprenoids, isopentenyl diphosphate and dimethylallyl pyrophosphate is carried out by the methylerythritol phosphate (MEP) pathway. This route of synthesis is absent in humans, who utilize the alternative mevalonate acid (MVA) route, thus making the enzymes of the MEP pathway of chemotherapeutic interest. One such identified target is the second enzyme of the pathway, 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR). Only limited information is currently available concerning the catalytic mechanism and structural dynamics of this enzyme, and only recently has a crystal structure of Mycobacterium tuberculosis species of this enzyme been resolved including all factors required for binding. Here, the dynamics of the enzyme is studied in complex with NADPH, Mn2+, in the presence and absence of the fosmidomycin inhibitor using conventional molecular dynamics and an enhanced sampling technique, Reversible Digitally Filtered Molecular Dynamics. The simulations reveal significant differences in the conformational dynamics of the vital catalytic loop between the inhibitor-free and inhibitor-bound enzyme complexes and highlight the contributions of conserved residues in this region. The substantial fluctuations observed suggest that DXR may be a promising target for computer-aided drug discovery through the relaxed complex method.
doi:10.1111/j.1747-0285.2008.00749.x
PMCID: PMC2982673  PMID: 19152632
7.  Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics 
An extension of the constant pH method originally implemented by Mongan et al. (J. Comput. Chem.2004, 25, 2038−2048) is proposed in this study. This adapted version of the method couples the constant pH methodology with the enhanced sampling technique of accelerated molecular dynamics, in an attempt to overcome the sampling issues encountered with current standard constant pH molecular dynamics methods. Although good results were reported by Mongan et al. on application of the standard method to the hen egg-white lysozyme (HEWL) system, residues which possess strong interactions with neighboring groups tend to converge slowly, resulting in the reported inconsistencies for predicted pKa values, as highlighted by the authors. The application of the coupled method described in this study to the HEWL system displays improvements over the standard version of the method, with the improved sampling leading to faster convergence and producing pKa values in closer agreement to those obtained experimentally for the more slowly converging residues.
doi:10.1021/ct9005294
PMCID: PMC2817915  PMID: 20148176
8.  TraY and Integration Host Factor oriT Binding Sites and F Conjugal Transfer: Sequence Variations, but Not Altered Spacing, Are Tolerated▿ †  
Journal of Bacteriology  2007;189(10):3813-3823.
Bacterial conjugation is the process by which a single strand of a conjugative plasmid is transferred from donor to recipient. For F plasmid, TraI, a relaxase or nickase, binds a single plasmid DNA strand at its specific origin of transfer (oriT) binding site, sbi, and cleaves at a site called nic. In vitro studies suggest TraI is recruited to sbi by its accessory proteins, TraY and integration host factor (IHF). TraY and IHF bind conserved oriT sites sbyA and ihfA, respectively, and bend DNA. The resulting conformational changes may propagate to nic, generating the single-stranded region that TraI can bind. Previous deletion studies performed by others showed transfer efficiency of a plasmid containing F oriT decreased progressively as increasingly longer segments, ultimately containing both sbyA and ihfA, were deleted. Here we describe our efforts to more precisely define the role of sbyA and ihfA by examining the effects of multiple base substitutions at sbyA and ihfA on binding and plasmid mobilization. While we observed significant decreases in in vitro DNA-binding affinities, we saw little effect on plasmid mobilization even when sbyA and ihfA variants were combined. In contrast, when half or full helical turns were inserted between the relaxosome protein-binding sites, mobilization was dramatically reduced, in some cases below the detectable limit of the assay. These results are consistent with TraY and IHF recognizing sbyA and ihfA with limited sequence specificity and with relaxosome proteins requiring proper spacing and orientation with respect to each other.
doi:10.1128/JB.01783-06
PMCID: PMC1913323  PMID: 17351033
9.  Changes in DNA bending and flexing due to tethered cations detected by fluorescence resonance energy transfer 
Nucleic Acids Research  2006;34(3):1028-1035.
Local DNA deformation arises from an interplay among sequence-related base stacking, intrastrand phosphate repulsion, and counterion and water distribution, which is further complicated by the approach and binding of a protein. The role of electrostatics in this complex chemistry was investigated using tethered cationic groups that mimic proximate side chains. A DNA duplex was modified with one or two centrally located deoxyuracils substituted at the 5-position with either a flexible 3-aminopropyl group or a rigid 3-aminopropyn-1-yl group. End-to-end helical distances and duplex flexibility were obtained from measurements of the time-resolved Förster resonance energy transfer between 5′- and 3′-linked dye pairs. A novel analysis utilized the first and second moments of the G(t) function, which encompasses only the energy transfer process. Duplex flexibility is altered by the presence of even a single positive charge. In contrast, the mean 5′–3′ distance is significantly altered by the introduction of two adjacently tethered cations into the double helix but not by a single cation: two adjacent aminopropyl groups decrease the 5′–3′ distance while neighboring aminopropynyl groups lengthen the helix.
doi:10.1093/nar/gkj498
PMCID: PMC1369283  PMID: 16481311
10.  Examination of an inverted repeat within the F factor origin of transfer: context dependence of F TraI relaxase DNA specificity 
Nucleic Acids Research  2006;34(2):426-435.
Prior to conjugative transfer of plasmids, one plasmid strand is cleaved in a site- and strand-specific manner by an enzyme called a relaxase or nickase. In F and related plasmids, an inverted repeat is located near the plasmid strand cleavage site, and others have proposed that the ability of this sequence to form a hairpin when in single-stranded form is important for transfer. Substitutions were introduced into a cloned F oriT region and their effects on plasmid transfer were assessed. For those substitutions that substantially reduced transfer, the results generally correlated with effects on in vitro binding of oligonucleotides to the F TraI relaxase domain rather than with predicted effects on hairpin formation. One substitution shown previously to dramatically reduce both plasmid transfer and in vitro binding to a 17-base oligonucleotide had little apparent effect on binding to a 30-base oligonucleotide that contained the hairpin region. Results from subsequent experiments strongly suggest that the relaxase domain can bind to hairpin oligonucleotides in two distinct manners with different sequence specificities, and that the protein binds the oligonucleotides at the same or overlapping sites.
doi:10.1093/nar/gkj444
PMCID: PMC1331984  PMID: 16418503

Results 1-10 (10)