Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  The use of epigenetic phenomena for the improvement of sheep and cattle 
Frontiers in Genetics  2014;5:247.
This review considers the evidence for inheritance across generations of epigenetic marks and how this phenomenon could be exploited in the cattle and sheep industries. Epigenetic marks are chemical changes in the chromosomes that affect the expression of genes and hence the phenotype of the cell and are passed on during mitosis so that the daughter cells have the same chemical changes or epigenetic marks as the parent cell. Although most epigenetic marks are wiped clean in the process of forming a new zygote, some epigenetic marks (epimutations) may be passed on from parent to offspring. The inheritance of epigenetic marks across generations is difficult to prove as there are usually alternative explanations possible. There are few well documented cases, mainly using inbred strains of mice. The epimutations are unstable and revert to wild type after a few generations. Although, there are no known cases in sheep or cattle, it is likely that inherited epimutations occur in these species but it is unlikely that they explain a large part of the inherited or genetic variation. There is limited evidence in mice and rats that an environmental treatment can cause a change in the epigenetic marks of an animal and that this change can be passed on the next generation. If inherited epimutations occur in sheep and cattle, they will already be utilized to some extent by existing genetic improvement programs. It would be possible to modify the statistical models used in the calculation of estimated breeding values to better recognize the variance controlled by epimutations, but it would probably have, at best, a small effect on the rate on genetic (inherited) gain achieved. Although not a genetic improvement, the inheritance of epigenetic marks caused by the environment experienced by the sire offers a new opportunity in sheep and cattle breeding. However, at present we do not know if this occurs or, if it does, what environmental treatment might have a beneficial effect.
PMCID: PMC4139735  PMID: 25191337
epigenetics; epimutations; genetic improvement; livestock; sheep; cattle
2.  Differential regulation of the α-globin locus by Krüppel-like factor 3 in erythroid and non-erythroid cells 
Krüppel-like Factor 3 (KLF3) is a broadly expressed zinc-finger transcriptional repressor with diverse biological roles. During erythropoiesis, KLF3 acts as a feedback repressor of a set of genes that are activated by Krüppel-like Factor 1 (KLF1). Noting that KLF1 binds α-globin gene regulatory sequences during erythroid maturation, we sought to determine whether KLF3 also interacts with the α-globin locus to regulate transcription.
We found that expression of a human transgenic α-globin reporter gene is markedly up-regulated in fetal and adult erythroid cells of Klf3−/− mice. Inspection of the mouse and human α-globin promoters revealed a number of canonical KLF-binding sites, and indeed, KLF3 was shown to bind to these regions both in vitro and in vivo. Despite these observations, we did not detect an increase in endogenous murine α-globin expression in Klf3 −/− erythroid tissue. However, examination of murine embryonic fibroblasts lacking KLF3 revealed significant de-repression of α-globin gene expression. This suggests that KLF3 may contribute to the silencing of the α-globin locus in non-erythroid tissue. Moreover, ChIP-Seq analysis of murine fibroblasts demonstrated that across the locus, KLF3 does not occupy the promoter regions of the α-globin genes in these cells, but rather, binds to upstream, DNase hypersensitive regulatory regions.
These findings reveal that the occupancy profile of KLF3 at the α-globin locus differs in erythroid and non-erythroid cells. In erythroid cells, KLF3 primarily binds to the promoters of the adult α-globin genes, but appears dispensable for normal transcriptional regulation. In non-erythroid cells, KLF3 distinctly binds to the HS-12 and HS-26 elements and plays a non-redundant, albeit modest, role in the silencing of α-globin expression.
PMCID: PMC4033687  PMID: 24885809
KLF1; KLF3; Alpha globin; Globin gene regulation; Transcription factor
3.  The first mouse mutants of D14Abb1e (Fam208a) show that it is critical for early development 
Mammalian Genome  2014;25(7-8):293-303.
An ENU mutagenesis screen to identify novel epigenetic modifiers was established in mice carrying a multi-copy GFP transgene, which is expressed in a variegated manner in erythrocytes and is highly sensitive to epigenetic silencing. The screen has produced mouse mutants of both known modifiers of epigenetic state, such as Dnmt1 and Smarca5, and novel modifiers, such as Smchd1 and Rlf. Here we report two mouse lines generated from the screen, MommeD6 and MommeD20, with point mutations in D14Abb1e. These are the first mouse mutants of D14Abb1e (alsoknownasFam208a), a gene about which little is known. Heterozygous intercrosses show that homozygous mutants from both the MommeD6 and MommeD20 lines are not viable beyond gastrulation, demonstrating an important role for D14Abb1e in development. We demonstrate that haploinsufficiency for D14Abb1e effects transgene expression at the RNA level. Analysis of the predicted D14Abb1e protein sequence reveals that it contains putative nuclear localisation signals and a domain of unknown function, DUF3715. Our studies reveal that D14Abb1e is localised to the nucleus and is expressed in skin and testes.
PMCID: PMC4105592  PMID: 24781204
4.  Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes 
Genome Biology  2013;14(3):R25.
DNA methylation and the Polycomb repression system are epigenetic mechanisms that play important roles in maintaining transcriptional repression. Recent evidence suggests that DNA methylation can attenuate the binding of Polycomb protein components to chromatin and thus plays a role in determining their genomic targeting. However, whether this role of DNA methylation is important in the context of transcriptional regulation is unclear.
By genome-wide mapping of the Polycomb Repressive Complex 2-signature histone mark, H3K27me3, in severely DNA hypomethylated mouse somatic cells, we show that hypomethylation leads to widespread H3K27me3 redistribution, in a manner that reflects the local DNA methylation status in wild-type cells. Unexpectedly, we observe striking loss of H3K27me3 and Polycomb Repressive Complex 2 from Polycomb target gene promoters in DNA hypomethylated cells, including Hox gene clusters. Importantly, we show that many of these genes become ectopically expressed in DNA hypomethylated cells, consistent with loss of Polycomb-mediated repression.
An intact DNA methylome is required for appropriate Polycomb-mediated gene repression by constraining Polycomb Repressive Complex 2 targeting. These observations identify a previously unappreciated role for DNA methylation in gene regulation and therefore influence our understanding of how this epigenetic mechanism contributes to normal development and disease.
PMCID: PMC4053768  PMID: 23531360
DNA methylation; H3K27me3; Polycomb; PRC2; regulation of transcription
5.  Epigenetics and phenotypic variation in mammals 
Mammalian Genome  2006;17(5):365-374.
What causes phenotypic variation? By now it is clear that phenotype is a result of the interaction between genotype and environment, in addition to variation not readily attributable to either. Epigenetic phenomena associated with phenotypic variation at the biochemical, cellular, tissue, and organism level are now well recognized and are likely to contribute to the “intangible variation” alluded to. While it is clear that epigenetic modifications are mitotically heritable, the fidelity of this process is not well understood. Inheritance through more than one generation of meioses is even less well studied. So it remains unclear to what extent epigenetic changes contribute to phenotypic variation in natural populations. How might such evidence be obtained? What are the features of phenotypes that might suggest an epigenetic component? How much of the epigenetic component is truly independent of genetic changes? The answers to such questions must come from studies designed specifically to detect subtle, stochastically determined phenotypic variation in suitable animal models.
PMCID: PMC3906716  PMID: 16688527
6.  An ENU mutagenesis screen identifies novel and known genes involved in epigenetic processes in the mouse 
Genome Biology  2013;14(9):R96.
We have used a sensitized ENU mutagenesis screen to produce mouse lines that carry mutations in genes required for epigenetic regulation. We call these lines Modifiers of murine metastable epialleles (Mommes).
We report a basic molecular and phenotypic characterization for twenty of the Momme mouse lines, and in each case we also identify the causative mutation. Three of the lines carry a mutation in a novel epigenetic modifier, Rearranged L-myc fusion (Rlf), and one gene, Rap-interacting factor 1 (Rif1), has not previously been reported to be involved in transcriptional regulation in mammals. Many of the other lines are novel alleles of known epigenetic regulators. For two genes, Rlf and Widely-interspaced zinc finger (Wiz), we describe the first mouse mutants. All of the Momme mutants show some degree of homozygous embryonic lethality, emphasizing the importance of epigenetic processes. The penetrance of lethality is incomplete in a number of cases. Similarly, abnormalities in phenotype seen in the heterozygous individuals of some lines occur with incomplete penetrance.
Recent advances in sequencing enhance the power of sensitized mutagenesis screens to identify the function of previously uncharacterized factors and to discover additional functions for previously characterized proteins. The observation of incomplete penetrance of phenotypes in these inbred mutant mice, at various stages of development, is of interest. Overall, the Momme collection of mouse mutants provides a valuable resource for researchers across many disciplines.
PMCID: PMC4053835  PMID: 24025402
7.  Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies 
Human Molecular Genetics  2012;21(8):1808-1823.
Mutations in components of the intraflagellar transport (IFT) machinery required for assembly and function of the primary cilium cause a subset of human ciliopathies characterized primarily by skeletal dysplasia. Recently, mutations in the IFT-A gene IFT144 have been described in patients with Sensenbrenner and Jeune syndromes, which are associated with short ribs and limbs, polydactyly and craniofacial defects. Here, we describe an N-ethyl-N-nitrosourea-derived mouse mutant with a hypomorphic missense mutation in the Ift144 gene. The mutant twinkle-toes (Ift144twt) phenocopies a number of the skeletal and craniofacial anomalies seen in patients with human skeletal ciliopathies. Like other IFT-A mouse mutants, Ift144 mutant embryos display a generalized ligand-independent expansion of hedgehog (Hh) signalling, in spite of defective ciliogenesis and an attenuation of the ability of mutant cells to respond to upstream stimulation of the pathway. This enhanced Hh signalling is consistent with cleft palate and polydactyly phenotypes in the Ift144twt mutant, although extensive rib branching, fusion and truncation phenotypes correlate with defects in early somite patterning and may reflect contributions from multiple signalling pathways. Analysis of embryos harbouring a second allele of Ift144 which represents a functional null, revealed a dose-dependent effect on limb outgrowth consistent with the short-limb phenotypes characteristic of these ciliopathies. This allelic series of mouse mutants provides a unique opportunity to uncover the underlying mechanistic basis of this intriguing subset of ciliopathies.
PMCID: PMC3313797  PMID: 22228095
8.  Mammalian epigenetics in biology and medicine 
PMCID: PMC3539369  PMID: 23166404
epigenetics; genetics; development
9.  A Forward Genetic Screen Identifies Eukaryotic Translation Initiation Factor 3, Subunit H (eIF3h), as an Enhancer of Variegation in the Mouse 
G3: Genes|Genomes|Genetics  2012;2(11):1393-1396.
We have used a forward genetic screen to identify genes required for transgene silencing in the mouse. Previously these genes were found using candidate-based sequencing, a slow and labor-intensive process. Recently, whole-exome deep sequencing has accelerated our ability to find the causative point mutations, resulting in the discovery of novel and sometimes unexpected genes. Here we report the identification of translation initiation factor 3, subunit H (eIF3h) in two modifier of murine metastable epialleles (Mommes) lines. Mice carrying mutations in this gene have not been reported previously, and a possible involvement of eIF3h in transcription or epigenetic regulation has not been considered.
PMCID: PMC3484669  PMID: 23173090
mouse; epigenetics; forward genetic screen; eIF3h
10.  Modifiers of epigenetic reprogramming show paternal effects in the mouse 
Nature genetics  2007;39(5):614-622.
There is increasing evidence that epigenetic information can be inherited across generations in mammals, despite extensive reprogramming both in the gametes and in the early developing embryo. One corollary to this is that disrupting the establishment of epigenetic state in the gametes of a parent, as a result of heterozygosity for mutations in genes involved in reprogramming, could affect the phenotype of offspring that do not inherit the mutant allele. Here we show that such effects do occur following paternal inheritance in the mouse. We detected changes to transcription and chromosome ploidy in adult animals. Paternal effects of this type have not been reported previously in mammals and suggest that the untransmitted genotype of male parents can influence the phenotype of their offspring.
PMCID: PMC3199608  PMID: 17450140
11.  The characterisation of piRNA-related 19mers in the mouse 
BMC Genomics  2011;12:315.
Piwi interacting RNA, or piRNA, is a class of small RNA almost exclusively expressed in the germline where they serve essential roles in retrotransposon silencing. There are two types, primary and secondary piRNA, and the latter is a product of enzymatic cleavage of retrotransposons' transcripts directed by the former. Recently, a new class of 19nt long RNA was discovered that is specific to testis and appears to be linked to secondary piRNA biogenesis.
We locate clusters of the testis-specific 19mers, which we call piRNA-related 19mers (pr19RNA), and characterise the transcripts from which they are derived. Most pr19RNA clusters were associated with retrotransposons and unannotated antisense transcripts overlapping piRNA clusters. At these loci the abundance of 19mers was found to be greater than that of secondary piRNAs.
We find that pr19RNAs are distinguished from other RNA populations by their length and flanking sequence, allowing their identification without requiring overlapping piRNAs. Using such sequence features allows identification of the source transcripts, and we suggest that these likely represent the substrates of primary piRNA-guided RNA cleavage events. While pr19RNAs appear not to bind directly to Miwi or Mili, their abundance relative to secondary piRNAs, in combination with their precise length, suggests they may be more than by-products of secondary piRNA biogenesis.
PMCID: PMC3143105  PMID: 21672259
12.  Reduced dosage of the modifiers of epigenetic reprogramming Dnmt1, Dnmt3L, SmcHD1 and Foxo3a has no detectable effect on mouse telomere length in vivo 
Chromosoma  2011;120(4):377-385.
Studies carried out in cultured cells have implicated modifiers of epigenetic reprogramming in the regulation of telomere length, reporting elongation in cells that were null for DNA methyltransferase DNA methyltransferase 1 (Dnmt1), both de novo DNA methyltransferases, Dnmt3a and Dnmt3b or various histone methyltransferases. To investigate this further, we assayed telomere length in whole embryos or adult tissue from mice carrying mutations in four different modifiers of epigenetic reprogramming: Dnmt1, DNA methyltransferase 3-like, structural maintenance of chromosomes hinge domain containing 1, and forkhead box O3a. Terminal restriction fragment analysis was used to compare telomere length in homozygous mutants, heterozygous mutants and wild-type littermates. Contrary to expectation, we did not detect overall lengthening in the mutants, raising questions about the role of epigenetic processes in telomere length in vivo.
Electronic supplementary material
The online version of this article (doi:10.1007/s00412-011-0318-9) contains supplementary material, which is available to authorized users.
PMCID: PMC3140923  PMID: 21553025
13.  DNMT3L Is a Regulator of X Chromosome Compaction and Post-Meiotic Gene Transcription 
PLoS ONE  2011;6(3):e18276.
Previous studies on the epigenetic regulator DNA methyltransferase 3-Like (DNMT3L), have demonstrated it is an essential regulator of paternal imprinting and early male meiosis. Dnmt3L is also a paternal effect gene, i.e., wild type offspring of heterozygous mutant sires display abnormal phenotypes suggesting the inheritance of aberrant epigenetic marks on the paternal chromosomes. In order to reveal the mechanisms underlying these paternal effects, we have assessed X chromosome meiotic compaction, XY chromosome aneuploidy rates and global transcription in meiotic and haploid germ cells from male mice heterozygous for Dnmt3L. XY bodies from Dnmt3L heterozygous males were significantly longer than those from wild types, and were associated with a three-fold increase in XY bearing sperm. Loss of a Dnmt3L allele resulted in deregulated expression of a large number of both X-linked and autosomal genes within meiotic cells, but more prominently in haploid germ cells. Data demonstrate that similar to embryonic stem cells, DNMT3L is involved in an auto-regulatory loop in germ cells wherein the loss of a Dnmt3L allele resulted in increased transcription from the remaining wild type allele. In contrast, however, within round spermatids, this auto-regulatory loop incorporated the alternative non-coding alternative transcripts. Consistent with the mRNA data, we have localized DNMT3L within spermatids and sperm and shown that the loss of a Dnmt3L allele results in a decreased DNMT3L content within sperm. These data demonstrate previously unrecognised roles for DNMT3L in late meiosis and in the transcriptional regulation of meiotic and post-meiotic germ cells. These data provide a potential mechanism for some cases of human Klinefelter's and Turner's syndromes.
PMCID: PMC3069080  PMID: 21483837
14.  The effects of acquired paternal obesity on the next generation 
Asian Journal of Andrology  2010;13(2):195-196.
PMCID: PMC3739201  PMID: 21186371
15.  Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise 
Genome Biology  2010;11(11):R111.
Inbred individuals reared in controlled environments display considerable variance in many complex traits but the underlying cause of this intangible variation has been an enigma. Here we show that two modifiers of epigenetic gene silencing play a critical role in the process.
Inbred mice heterozygous for a null mutation in DNA methyltransferase 3a (Dnmt3a) or tripartite motif protein 28 (Trim28) show greater coefficients of variance in body weight than their wild-type littermates. Trim28 mutants additionally develop metabolic syndrome and abnormal behavior with incomplete penetrance. Genome-wide gene expression analyses identified 284 significantly dysregulated genes in Trim28 heterozygote mutants compared to wild-type mice, with Mas1, which encodes a G-protein coupled receptor implicated in lipid metabolism, showing the greatest average change in expression (7.8-fold higher in mutants). This gene also showed highly variable expression between mutant individuals.
These studies provide a molecular explanation of developmental noise in whole organisms and suggest that faithful epigenetic control of transcription is central to suppressing deleterious levels of phenotypic variation. These findings have broad implications for understanding the mechanisms underlying sporadic and complex disease in humans.
PMCID: PMC3156950  PMID: 21092094
16.  Maternal Ethanol Consumption Alters the Epigenotype and the Phenotype of Offspring in a Mouse Model 
PLoS Genetics  2010;6(1):e1000811.
Recent studies have shown that exposure to some nutritional supplements and chemicals in utero can affect the epigenome of the developing mouse embryo, resulting in adult disease. Our hypothesis is that epigenetics is also involved in the gestational programming of adult phenotype by alcohol. We have developed a model of gestational ethanol exposure in the mouse based on maternal ad libitum ingestion of 10% (v/v) ethanol between gestational days 0.5–8.5 and observed changes in the expression of an epigenetically-sensitive allele, Agouti viable yellow (Avy), in the offspring. We found that exposure to ethanol increases the probability of transcriptional silencing at this locus, resulting in more mice with an agouti-colored coat. As expected, transcriptional silencing correlated with hypermethylation at Avy. This demonstrates, for the first time, that ethanol can affect adult phenotype by altering the epigenotype of the early embryo. Interestingly, we also detected postnatal growth restriction and craniofacial dysmorphology reminiscent of fetal alcohol syndrome, in congenic a/a siblings of the Avy mice. These findings suggest that moderate ethanol exposure in utero is capable of inducing changes in the expression of genes other than Avy, a conclusion supported by our genome-wide analysis of gene expression in these mice. In addition, offspring of female mice given free access to 10% (v/v) ethanol for four days per week for ten weeks prior to conception also showed increased transcriptional silencing of the Avy allele. Our work raises the possibility of a role for epigenetics in the etiology of fetal alcohol spectrum disorders, and it provides a mouse model that will be a useful resource in the continued efforts to understand the consequences of gestational alcohol exposure at the molecular level.
Author Summary
In humans it has been known for some time that exposure to environmental insults during pregnancy can harm a developing fetus and have life-long effects on the individual's health. A well known example is fetal alcohol syndrome, where the children of mothers that consume large amounts of alcohol during pregnancy exhibit growth retardation, changes to the shape and size of the skull, and central nervous system defects. At present the molecular events underlying fetal alcohol syndrome are unknown. We have developed a model of alcohol exposure in the mouse, in which the genetics and the environment can be strictly controlled. We find that chronic exposure of the fetus to a physiologically relevant amount of alcohol during the first half of pregnancy results in epigenetic changes at a sensitive reporter gene and produces fetal alcohol syndrome-like features in some mice. Our model is a useful tool to study the underlying causes of fetal alcohol syndrome, and our work raises the interesting possibility that the long-term physical effects of alcohol exposure during pregnancy are mediated by epigenetic changes established in the fetus and then faithfully remembered for a lifetime. In the future, such epigenetic changes could be used as markers for the preclinical diagnosis and treatment of fetal alcohol spectrum disorders.
PMCID: PMC2797299  PMID: 20084100
17.  A genome-wide screen for modifiers of transgene variegation identifies genes with critical roles in development 
Genome Biology  2008;9(12):R182.
An extended ENU screen for modifiers of transgene variegation identified four new modifiers, MommeD7-D10.
Some years ago we established an N-ethyl-N-nitrosourea screen for modifiers of transgene variegation in the mouse and a preliminary description of the first six mutant lines, named MommeD1-D6, has been published. We have reported the underlying genes in three cases: MommeD1 is a mutation in SMC hinge domain containing 1 (Smchd1), a novel modifier of epigenetic gene silencing; MommeD2 is a mutation in DNA methyltransferase 1 (Dnmt1); and MommeD4 is a mutation in Smarca 5 (Snf2h), a known chromatin remodeler. The identification of Dnmt1 and Smarca5 attest to the effectiveness of the screen design.
We have now extended the screen and have identified four new modifiers, MommeD7-D10. Here we show that all ten MommeDs link to unique sites in the genome, that homozygosity for the mutations is associated with severe developmental abnormalities and that heterozygosity results in phenotypic abnormalities and reduced reproductive fitness in some cases. In addition, we have now identified the underlying genes for MommeD5 and MommeD10. MommeD5 is a mutation in Hdac1, which encodes histone deacetylase 1, and MommeD10 is a mutation in Baz1b (also known as Williams syndrome transcription factor), which encodes a transcription factor containing a PHD-type zinc finger and a bromodomain. We show that reduction in the level of Baz1b in the mouse results in craniofacial features reminiscent of Williams syndrome.
These results demonstrate the importance of dosage-dependent epigenetic reprogramming in the development of the embryo and the power of the screen to provide mouse models to study this process.
PMCID: PMC2646286  PMID: 19099580
18.  Leaving the Past Behind 
PLoS Genetics  2008;4(10):e1000248.
PMCID: PMC2569149  PMID: 18974866
19.  Dynamic Reprogramming of DNA Methylation at an Epigenetically Sensitive Allele in Mice 
PLoS Genetics  2006;2(4):e49.
There is increasing evidence in both plants and animals that epigenetic marks are not always cleared between generations. Incomplete erasure at genes associated with a measurable phenotype results in unusual patterns of inheritance from one generation to the next, termed transgenerational epigenetic inheritance. The Agouti viable yellow (Avy) allele is the best-studied example of this phenomenon in mice. The Avy allele is the result of a retrotransposon insertion upstream of the Agouti gene. Expression at this locus is controlled by the long terminal repeat (LTR) of the retrotransposon, and expression results in a yellow coat and correlates with hypomethylation of the LTR. Isogenic mice display variable expressivity, resulting in mice with a range of coat colours, from yellow through to agouti. Agouti mice have a methylated LTR. The locus displays epigenetic inheritance following maternal but not paternal transmission; yellow mothers produce more yellow offspring than agouti mothers. We have analysed the DNA methylation in mature gametes, zygotes, and blastocysts and found that the paternally and maternally inherited alleles are treated differently. The paternally inherited allele is demethylated rapidly, and the maternal allele is demethylated more slowly, in a manner similar to that of nonimprinted single-copy genes. Interestingly, following maternal transmission of the allele, there is no DNA methylation in the blastocyst, suggesting that DNA methylation is not the inherited mark. We have independent support for this conclusion from studies that do not involve direct analysis of DNA methylation. Haplo-insufficiency for Mel18, a polycomb group protein, introduces epigenetic inheritance at a paternally derived Avy allele, and the pedigrees reveal that this occurs after zygotic genome activation and, therefore, despite the rapid demethylation of the locus.
There is now a reasonable amount of evidence from both epidemiological studies in humans and from genetic studies in animals and plants that information in addition to the primary DNA sequence is inherited across generations and can influence the phenotype of the offspring. Researchers refer to this information as epigenetic, and there is much interest in discovering the molecular basis for this epigenetic information. They now know a great deal about the various types of epigenetic marks that regulate the expression of the genome within the life of an organism, and these include both modifications to the DNA molecule itself, specifically DNA methylation and modifications to the proteins that package the DNA into chromosomes, termed chromatin. DNA methylation appears to be one of the most stable epigenetic modifications and has been the primary candidate for the molecule responsible for transgenerational epigenetic inheritance. The results presented here suggest that DNA methylation is not the inherited epigenetic mark, at least in the mouse model used in this study.
PMCID: PMC1428789  PMID: 16604157
20.  Complex patterns of transcription at the insertion site of a retrotransposon in the mouse 
Nucleic Acids Research  2004;32(19):5800-5808.
Here we report that transcriptional effects of the insertion of a retrotransposon can occur simultaneously both upstream and downstream of the insertion site. We have identified an intra-cisternal A particle (IAP) retrotransposon in intron 6 of a gene that we have named Cabp (CDK5 activator binding protein). The presence of the IAP is associated with an aberrant transcript initiating from a cryptic promoter in the IAP, reading out into the adjacent Cabp gene sequence. The expression of this transcript is highly variable among isogenic mice within the C57BL/6J strain and so CabpIAP can be classified as a metastable epiallele. As expected, the presence or absence of the transcript correlates with differential DNA methylation of the 5′ LTR of the IAP. More surprisingly, in mice where the retrotransposon is unmethylated and presumably transcriptionally active, we find a number of short Cabp transcripts which initiate at the normal 5′ end of the gene but terminate prematurely, just 5′ of the retrotransposon. This is the first report of a retrotransposon having both upstream and downstream effects on transcription at the site of insertion and it suggests that alternative polyadenylation may sometimes be caused by a downstream convergent transcription unit.
PMCID: PMC528799  PMID: 15520464
21.  Complex patterns of inheritance of an imprinted murine transgene suggest incomplete germline erasure 
Nucleic Acids Research  2000;28(17):3301-3309.
Here we report a transgenic mouse line that exhibits significant deviations from a classic pattern of parental imprinting. When the transgene is passed through the female germline, it is completely silenced in some offspring while in others expression is reduced. This variable expressivity does not appear to be the result of differences in the presence of unlinked modifiers. Female transmission of the transgene is associated with hypermethylation. The transgene is generally reactivated on passage through the male germline. Extended pedigrees reveal complex patterns of inheritance of the phenotype. The most likely explanation for this result is that the imprint is not completely erased and reset when passed through the germline of either sex. FISH analysis reveals that the transgene has integrated into chromosome 3 band E3, a region not known to carry imprinted genes, and the integration site shows no sign of allele-specific differential methylation. These findings, in conjunction with other recent work, raise the possibility that the introduction of foreign DNA into the mammalian genome, either through retrotransposition or transgenesis, may be associated with parental imprinting that is not always erased and reset during meiosis.
PMCID: PMC110704  PMID: 10954598
22.  The Chicken β-Globin 5′HS4 Boundary Element Blocks Enhancer-Mediated Suppression of Silencing 
Molecular and Cellular Biology  1999;19(5):3714-3726.
A constitutive DNase I-hypersensitive site 5′ of the chicken β-globin locus, termed 5′HS4 or cHS4, has been shown to insulate a promoter from the effect of an upstream enhancer and to reduce position effects on mini-white expression in Drosophila cells; on the basis of these findings, it has been designated a chromatin insulator. We have examined the effect of the cHS4 insulator in a system that assays both the level of gene expression and the rate of transcriptional silencing. Because transgenes flanked by insulator elements are shielded from position effects in Drosophila cells, we tested the ability of cHS4 to protect transgenes from position effects in mammalian cells. Flanking of an expression vector with the cHS4 insulator in a colony assay did not increase the number of G418-resistant colonies. Using lox/cre-based recombinase-mediated cassette exchange to control integration position, we studied the effect of cHS4 on the silencing of an integrated β-geo reporter at three genomic sites in K562 erythroleukemia cells. In this assay, enhancers act to suppress silencing but do not increase expression levels. While cHS4 blocked enhancement at each integration site, the strength of the effect varied from site to site. Furthermore, at some sites, cHS4 inhibited the enhancer effect either when placed between the enhancer and the promoter or when placed upstream of the enhancer. These results suggest that the activity of cHS4 is not dominant in all contexts and is unlikely to prevent silencing at all genomic integration sites.
PMCID: PMC84188  PMID: 10207095

Results 1-22 (22)