PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  DBD2BS: connecting a DNA-binding protein with its binding sites 
Nucleic Acids Research  2012;40(Web Server issue):W173-W179.
By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein–DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD–DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein–DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies.
Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw.
doi:10.1093/nar/gks564
PMCID: PMC3394304  PMID: 22693214
2.  Predicting Target DNA Sequences of DNA-Binding Proteins Based on Unbound Structures 
PLoS ONE  2012;7(2):e30446.
DNA-binding proteins such as transcription factors use DNA-binding domains (DBDs) to bind to specific sequences in the genome to initiate many important biological functions. Accurate prediction of such target sequences, often represented by position weight matrices (PWMs), is an important step to understand many biological processes. Recent studies have shown that knowledge-based potential functions can be applied on protein-DNA co-crystallized structures to generate PWMs that are considerably consistent with experimental data. However, this success has not been extended to DNA-binding proteins lacking co-crystallized structures. This study aims at investigating the possibility of predicting the DNA sequences bound by DNA-binding proteins from the proteins' unbound structures (structures of the unbound state). Given an unbound query protein and a template complex, the proposed method first employs structure alignment to generate synthetic protein-DNA complexes for the query protein. Once a complex is available, an atomic-level knowledge-based potential function is employed to predict PWMs characterizing the sequences to which the query protein can bind. The evaluation of the proposed method is based on seven DNA-binding proteins, which have structures of both DNA-bound and unbound forms for prediction as well as annotated PWMs for validation. Since this work is the first attempt to predict target sequences of DNA-binding proteins from their unbound structures, three types of structural variations that presumably influence the prediction accuracy were examined and discussed. Based on the analyses conducted in this study, the conformational change of proteins upon binding DNA was shown to be the key factor. This study sheds light on the challenge of predicting the target DNA sequences of a protein lacking co-crystallized structures, which encourages more efforts on the structure alignment-based approaches in addition to docking- and homology modeling-based approaches for generating synthetic complexes.
doi:10.1371/journal.pone.0030446
PMCID: PMC3270014  PMID: 22312425
3.  A study on the flexibility of enzyme active sites 
BMC Bioinformatics  2011;12(Suppl 1):S32.
Background
A common assumption about enzyme active sites is that their structures are highly conserved to specifically distinguish between closely similar compounds. However, with the discovery of distinct enzymes with similar reaction chemistries, more and more studies discussing the structural flexibility of the active site have been conducted.
Results
Most of the existing works on the flexibility of active sites focuses on a set of pre-selected active sites that were already known to be flexible. This study, on the other hand, proposes an analysis framework composed of a new data collecting strategy, a local structure alignment tool and several physicochemical measures derived from the alignments. The method proposed to identify flexible active sites is highly automated and robust so that more extensive studies will be feasible in the future. The experimental results show the proposed method is (a) consistent with previous works based on manually identified flexible active sites and (b) capable of identifying potentially new flexible active sites.
Conclusions
This proposed analysis framework and the former analyses on flexibility have their own advantages and disadvantage, depending on the cause of the flexibility. In this regard, this study proposes an alternative that complements previous studies and helps to construct a more comprehensive view of the flexibility of enzyme active sites.
doi:10.1186/1471-2105-12-S1-S32
PMCID: PMC3044288  PMID: 21342563
4.  E1DS: catalytic site prediction based on 1D signatures of concurrent conservation 
Nucleic Acids Research  2008;36(Web Server issue):W291-W296.
Large-scale automatic annotation of protein sequences remains challenging in postgenomics era. E1DS is designed for annotating enzyme sequences based on a repository of 1D signatures. The employed sequence signatures are derived using a novel pattern mining approach that discovers long motifs consisted of several sequential blocks (conserved segments). Each of the sequential blocks is considerably conserved among the protein members of an EC group. Moreover, a signature includes at least three sequential blocks that are concurrently conserved, i.e. frequently observed together in sequences. In other words, a sequence signature is consisted of residues from multiple regions of the protein sequence, which echoes the observation that an enzyme catalytic site is usually constituted of residues that are largely separated in the sequence. E1DS currently contains 5421 sequence signatures that in total cover 932 4-digital EC numbers. E1DS is evaluated based on a collection of enzymes with catalytic sites annotated in Catalytic Site Atlas. When compared to the famous pattern database PROSITE, predictions based on E1DS signatures are considered more sensitive in identifying catalytic sites and the involved residues. E1DS is available at http://e1ds.ee.ncku.edu.tw/ and a mirror site can be found at http://e1ds.csbb.ntu.edu.tw/.
doi:10.1093/nar/gkn324
PMCID: PMC2447799  PMID: 18524800
5.  Protemot: prediction of protein binding sites with automatically extracted geometrical templates 
Nucleic Acids Research  2006;34(Web Server issue):W303-W309.
Geometrical analysis of protein tertiary substructures has been an effective approach employed to predict protein binding sites. This article presents the Protemot web server that carries out prediction of protein binding sites based on the structural templates automatically extracted from the crystal structures of protein–ligand complexes in the PDB (Protein Data Bank). The automatic extraction mechanism is essential for creating and maintaining a comprehensive template library that timely accommodates to the new release of PDB as the number of entries continues to grow rapidly. The design of Protemot is also distinctive by the mechanism employed to expedite the analysis process that matches the tertiary substructures on the contour of the query protein with the templates in the library. This expediting mechanism is essential for providing reasonable response time to the user as the number of entries in the template library continues to grow rapidly due to rapid growth of the number of entries in PDB. This article also reports the experiments conducted to evaluate the prediction power delivered by the Protemot web server. Experimental results show that Protemot can deliver a superior prediction power than a web server based on a manually curated template library with insufficient quantity of entries. Availability: .
doi:10.1093/nar/gkl344
PMCID: PMC1538868  PMID: 16845015

Results 1-5 (5)