PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None

Select a Filter Below

Authors
Year of Publication
Document Types
1.  Discrimination between adenocarcinoma and normal pancreatic ductal fluid by proteomic and glycomic analysis 
Journal of proteome research  2013;13(2):395-407.
Sensitive and specific biomarkers for pancreatic cancer are currently unavailable. The high mortality associated with adenocarcinoma of the pancreatic epithelium justifies the broadest possible search for new biomarkers that can facilitate early detection or monitor treatment efficacy. Protein glycosylation is altered in many cancers, leading many to propose that glycoproteomic changes may provide suitable biomarkers. In order to assess this possibility for pancreatic cancer, we have performed an in-depth LC-MS/MS analysis of the proteome and MSn-based characterization of the N-linked glycome of a small set of pancreatic ductal fluid obtained from normal, pancreatitis, intraductal papillary mucinous neoplasm (IPMN), and pancreatic adenocarcinoma patients. Our results identify a set of seven proteins that were consistently increased in cancer ductal fluid compared to normal (AMYP, PRSS1, GP2-1, CCDC132, REG1A, REG1B, and REG3A) and one protein that was consistently decreased (LIPR2). These proteins are all directly or indirectly associated with the secretory pathway in normal pancreatic cells. Validation of these changes in abundance by Western blotting revealed increased REG protein glycoform diversity in cancer. Characterization of the total N-linked glycome of normal, IPMN, and adenocarcinoma ductal fluid clustered samples into three discrete groups based on the prevalence of 6 dominant glycans. Within each group, the profiles of less prevalent glycans were able to distinguish normal from cancer on this small set of samples. Our results emphasize that individual variation in protein glycosylation must be considered when assessing the value of a glycoproteomic marker, but also indicate that glycosylation diversity across human subjects can be reduced to simpler clusters of individuals whose N-linked glycans share structural features.
doi:10.1021/pr400422g
PMCID: PMC3946306  PMID: 24328148
Pancreatic cancer; Proteomics; Biomarker; N-linked glycan; Glycomics
2.  Dissecting the Molecular Basis of the Role of the O-Mannosylation Pathway in Disease: α-Dystroglycan and Forms of Muscular Dystrophy 
Dystroglycanopathies are a subgroup of muscular dystrophies that arise from defects in the enzymes implicated in the recently elucidated O-mannosylation pathway, resulting in underglycosylation of α-dystroglycan. The emerging identification of additional brain proteins modified by O-mannosylation provides a broader context for interpreting the range of neurological consequences associated with dystroglycanopathies. This form of glycosylation is associated with protein mucin-like domains which present numerous serine and threonine residues as possible sites for modification. Further, the O-Man glycans coexist in this region with O-GalNAc glycans, conventionally associated with such protein sequences, resulting in a complex glycoconjugate landscape. Sorting out the relationships between the various molecular defects in glycosylation and the modes of disease presentation, as well as the regulatory interplay among the O-Man glycans, and the effects on other modes of glycosylation in the same domain is challenging. Here we provide a perspective on chemical biology approaches employing synthetic and analytical methods to address these questions.
doi:10.1002/cbic.201300417
PMCID: PMC3938021  PMID: 24318691
Glycopeptides; Carbohydrates; Muscular Dystrophy; α-Dystroglycan; Dystroglycanopathy; Protein O-Mannosylation
3.  The Role of the O-GlcNAc Modification in Regulating Eukaryotic Gene Expression 
O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins has been shown to be involved in many different cellular processes, such as cell cycle control, nutrient sensing, signal transduction, stress response and transcriptional regulation. Cells have developed complex regulatory systems in order to regulate gene expression appropriately in response to environmental and intracellular cues. Control of eukaryotic gene transcription often involves post-translational modification of a multitude of proteins including transcription factors, basal transcription machinery, and chromatin remodeling complexes to modulate their functions in a variety of manners. In this review we describe the emerging functional roles for and techniques to detect and modulate the O-GlcNAc modification and illustrate that the O-GlcNAc modification is intricately involved in at least seven different general mechanisms for the control of gene transcription.
doi:10.2174/157436210790226465
PMCID: PMC4255977  PMID: 25484640
O-GlcNAc; transcriptional regulation; post-translational modification; review
4.  B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan 
eLife  2014;3:e03943.
Recent studies demonstrated that mutations in B3GNT1, an enzyme proposed to be involved in poly-N-acetyllactosamine synthesis, were causal for congenital muscular dystrophy with hypoglycosylation of α-dystroglycan (secondary dystroglycanopathies). Since defects in the O-mannosylation protein glycosylation pathway are primarily responsible for dystroglycanopathies and with no established O-mannose initiated structures containing a β3 linked GlcNAc known, we biochemically interrogated this human enzyme. Here we report this enzyme is not a β-1,3-N-acetylglucosaminyltransferase with catalytic activity towards β-galactose but rather a β-1,4-glucuronyltransferase, designated B4GAT1, towards both α- and β-anomers of xylose. The dual-activity LARGE enzyme is capable of extending products of B4GAT1 and we provide experimental evidence that B4GAT1 is the priming enzyme for LARGE. Our results further define the functional O-mannosylated glycan structure and indicate that B4GAT1 is involved in the initiation of the LARGE-dependent repeating disaccharide that is necessary for extracellular matrix protein binding to O-mannosylated α-dystroglycan that is lacking in secondary dystroglycanopathies.
DOI: http://dx.doi.org/10.7554/eLife.03943.001
eLife digest
Dystroglycan is a protein that is essential for muscles to function correctly, and helps to connect the interior framework of muscle cells with the external matrix of molecules that hold the cells together in the tissue. As is the case for many proteins, dystroglycan must have particular carbohydrate molecules joined to it in order to work correctly. Enzymes called glycosyltransferases assist with the reactions that build the carbohydrates on a protein.
Mutations in multiple glycosyltransferases that add carbohydrates to dystroglycan can cause a group of diseases that are characterized by a progressive loss of muscle function, known as congenital muscular dystrophies. Praissman et al. use biochemical experimentation to investigate the role of one of these enzymes, known as B3GNT1. The enzyme's name is based on a code that describes which carbohydrate it helps to bind to proteins. However, Praissman et al. (and independently, Willer et al.) discovered that this enzyme actually works with a different donor and acceptor than previously thought, and so should be called B4GAT1 instead.
Praissman et al. propose that the B4GAT1 enzyme starts the process of forming the carbohydrate structures that help muscle cells bind to the muscle tissue matrix. B4GAT1 forms short carbohydrates on the surface of the part of dystroglycan that sits on the surface of cells. These carbohydrates are then extended into longer chains by another glycosyltransferase called LARGE. The results of Praissman et al. suggest that another enzyme is also involved in this process, which will require further studies to identify. Understanding the role of B4GAT1 and other glycosyltransferases that build functionally glycosylated dystroglycan could help to develop treatments for diseases such as muscular dystrophies.
DOI: http://dx.doi.org/10.7554/eLife.03943.002
doi:10.7554/eLife.03943
PMCID: PMC4227051  PMID: 25279697
congenital muscular dystrophy; O-mannosylation; glycosylation; alpha-dystroglycan; B4GAT1; B3GNT1; human
5.  A Chromosome-Centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17 
Journal of proteome research  2012;12(1):45-57.
We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 ‘missing’ proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of ‘missing’ proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV and single nucleotide variant (SNV) databases and the construction of websites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the chromosome. Since chromosome 17 is rich in cancer associated genes we have focused the clustering of cancer associated genes in such genomic regions and have used the ERBB2 amplicon as an example of the value of a proteogenomic approach in which one integrates transcriptomic with proteomic information and captures evidence of co-expression through coordinated regulation.
doi:10.1021/pr300985j
PMCID: PMC4142220  PMID: 23259914
Chromosome-Centric Human Proteome Project; Chromosome 17 Parts List; ERBB2; Oncogene
6.  Mapping Glycans onto Specific N-Linked Glycosylation Sites of Pyrus Communis PGIP Redefines the Interface for EPG:PGIP Interactions 
Journal of proteome research  2009;8(2):673-680.
Polygalacturonase inhibiting proteins (PGIPs) are members of the leucine rich repeat family of proteins, involved in plant defense against fungal pathogens. PGIPs exhibit a remarkable degree of specificity in terms of their ability to bind and inhibit their target molecules, the endopolygalacturonases (EPGs). This specificity has been attributed for certain EPG/PGIP combinations to differences in primary sequence, but this explanation is unable to account for the full range of binding and inhibitory activities observed. In this paper we have fully characterized the glycosylation on the PGIP derived from Pyrus communis and demonstrated, using a combination of PNGaseF and PNGaseA in 18O-water, that the Pyrus communis PGIP utilizes all seven potential sites of N-linked glycosylation. Further, we demonstrate that certain sites appear to be modified only by glycans bearing α3-linked core fucosylation, while others are occupied by a mixture of fucosylated and non-fucosylated glycans. Modeling of the carbohydrates onto a homologous structure of PGIP indicates potential roles for glycosylation in mediating the interactions of PGIPs with EPGs.
doi:10.1021/pr800855f
PMCID: PMC4141487  PMID: 19072240
7.  IDAWG: Metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells 
Journal of proteome research  2009;8(8):3816-3823.
Robust quantification is an essential component of comparative –omic strategies. In this regard, glycomics lags behind proteomics. Although various isotope-tagging and direct quantification methods have recently enhanced comparative glycan analysis, a cell culture labeling strategy, that could provide for glycomics the advantages that SILAC provides for proteomics, has not been described. Here we report the development of IDAWG, Isotopic Detection of Aminosugars With Glutamine, for the incorporation of differential mass tags into the glycans of cultured cells. In this method, culture media containing amide-15N-Gln is used to metabolically label cellular aminosugars with heavy nitrogen. Because the amide side chain of Gln is the sole source of nitrogen for the biosynthesis of GlcNAc, GalNAc, and sialic acid, we demonstrate that culturing mouse embryonic stems cells for 72 hours in the presence of amide-15N-Gln media results in nearly complete incorporation of 15N into N-linked and O-linked glycans. The isotopically heavy monosaccharide residues provide additional information for interpreting glycan fragmentation and also allow quantification in both full MS and MS/MS modes. Thus, IDAWG is a simple to implement, yet powerful quantitative tool for the glycomics toolbox.
doi:10.1021/pr8010028
PMCID: PMC4141490  PMID: 19449840
8.  O-Mannosylation and Human Disease 
Glycosylation of proteins is arguably the most prevalent co-and post-translational modification. It is responsible for increased heterogeneity and functional diversity of proteins. Here we discuss the importance of one type of glycosylation, specifically O-mannosylation and its relationship with a number of human diseases. The most widely studied O-mannose modified protein is alpha-dystroglycan (α-DG). Recent studies have focused intensely on α-DG due to the severity of diseases associated with its improper glycosylation. O-mannosylation of α-DG is involved in cancer metastasis, arenavirus entry, and multiple forms of congenital muscular dystrophy (1, 2). In this review, we discuss structural and functional characteristics of O-mannose initiated glycan structures on α-DG, enzymes involved in the O-mannosylation pathway, and the diseases that are a direct result of disruptions within this pathway.
doi:10.1007/s00018-012-1193-0
PMCID: PMC3984002  PMID: 23115008
Alpha-dystroglycan; arenavirus; cancer; LARGE; ISPD; metastasis; congenital muscular dystrophy; dystroglycanopathy
9.  Quantitative secretome and glycome of primary human adipocytes during insulin resistance 
Clinical proteomics  2014;11(1):20.
Adipose tissue is both an energy storage depot and an endocrine organ. The impaired regulation of the secreted proteins of adipose tissue, known as adipocytokines, observed during obesity contributes to the onset of whole-body insulin resistance and the pathobiology of type 2 diabetes mellitus (T2DM). In addition, the global elevation of the intracellular glycosylation of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) via either genetic or pharmacological methods is sufficient to induce insulin resistance in both cultured cells and animal models. The elevation of global O-GlcNAc levels is associated with the altered expression of many adipocytokines. We have previously characterized the rodent adipocyte secretome during insulin sensitive and insulin resistant conditions. Here, we characterize and quantify the secretome and glycome of primary human adipocytes during insulin responsive and insulin resistant conditions generated by the classical method of hyperglycemia and hyperinsulinemia or by the pharmacological manipulation of O-GlcNAc levels. Using a proteomic approach, we identify 190 secreted proteins and report a total of 20 up-regulated and 6 down-regulated proteins that are detected in both insulin resistant conditions. Moreover, we apply glycomic techniques to examine (1) the sites of N-glycosylation on secreted proteins, (2) the structures of complex N- and O-glycans, and (3) the relative abundance of complex N- and O-glycans structures in insulin responsive and insulin resistant conditions. We identify 91 N-glycosylation sites derived from 51 secreted proteins, as well as 155 and 29 released N- and O-glycans respectively. We go on to quantify many of the N- and O-glycan structures between insulin responsive and insulin resistance conditions demonstrating no significant changes in complex glycosylation in the time frame for the induction of insulin resistance. Thus, our data support that the O-GlcNAc modification is involved in the regulation of adipocytokine secretion upon the induction of insulin resistance in human adipocytes.
doi:10.1186/1559-0275-11-20
PMCID: PMC4055909  PMID: 24948903
O-GlcNAc; Insulin resistance; Type 2 diabetes; Adipocytokine; Tandem mass spectrometry; Shotgun proteomics; Glycomics; N-linked; O-linked
10.  MIRAGE: The minimum information required for a glycomics experiment 
Glycobiology  2014;24(5):402-406.
The MIRAGE (minimum information required for a glycomics experiment) initiative was founded in Seattle, WA, in November 2011 in order to develop guidelines for reporting the qualitative and quantitative results obtained by diverse types of glycomics analyses, including the conditions and techniques that were applied to prepare the glycans for analysis and generate the primary data along with the tools and parameters that were used to process and annotate this data. These guidelines must address a broad range of issues, as glycomics data are inherently complex and are generated using diverse methods, including mass spectrometry (MS), chromatography, glycan array-binding assays, nuclear magnetic resonance (NMR) and other rapidly developing technologies. The acceptance of these guidelines by scientists conducting research on biological systems in which glycans have a significant role will facilitate the evaluation and reproduction of glycomics experiments and data that is reported in scientific journals and uploaded to glycomics databases. As a first step, MIRAGE guidelines for glycan analysis by MS have been recently published (Kolarich D, Rapp E, Struwe WB, Haslam SM, Zaia J., et al. 2013. The minimum information required for a glycomics experiment (MIRAGE) project – Improving the standards for reporting mass spectrometry-based glycoanalytic data. Mol. Cell Proteomics. 12:991–995), allowing them to be implemented and evaluated in the context of real-world glycobiology research. In this paper, we set out the historical context, organization structure and overarching objectives of the MIRAGE initiative.
doi:10.1093/glycob/cwu018
PMCID: PMC3976285  PMID: 24653214
11.  Global O-GlcNAc Levels Modulate Transcription of the Adipocyte Secretome during Chronic Insulin Resistance 
Increased flux through the hexosamine biosynthetic pathway and the corresponding increase in intracellular glycosylation of proteins via O-linked β-N-acetylglucosamine (O-GlcNAc) is sufficient to induce insulin resistance (IR) in multiple systems. Previously, our group used shotgun proteomics to identify multiple rodent adipocytokines and secreted proteins whose levels are modulated upon the induction of IR by indirectly and directly modulating O-GlcNAc levels. We have validated the relative levels of several of these factors using immunoblotting. Since adipocytokines levels are regulated primarily at the level of transcription and O-GlcNAc alters the function of many transcription factors, we hypothesized that elevated O-GlcNAc levels on key transcription factors are modulating secreted protein expression. Here, we show that upon the elevation of O-GlcNAc levels and the induction of IR in mature 3T3-F442a adipocytes, the transcript levels of multiple secreted proteins reflect the modulation observed at the protein level. We validate the transcript levels in male mouse models of diabetes. Using inguinal fat pads from the severely IR db/db mouse model and the mildly IR diet-induced mouse model, we have confirmed that the secreted proteins regulated by O-GlcNAc modulation in cell culture are likewise modulated in the whole animal upon a shift to IR. By comparing the promoters of similarly regulated genes, we determine that Sp1 is a common cis-acting element. Furthermore, we show that the LPL and SPARC promoters are enriched for Sp1 and O-GlcNAc modified proteins during insulin resistance in adipocytes. Thus, the O-GlcNAc modification of proteins bound to promoters, including Sp1, is linked to adipocytokine transcription during insulin resistance.
doi:10.3389/fendo.2014.00223
PMCID: PMC4302944  PMID: 25657638
O-GlcNAc; insulin resistance; adipose tissue; adipocytokines; transcription
12.  Quantitative Glycomics of Cultured Cells Using Isotopic Detection of Aminosugars with Glutamine (IDAWG) 
IDAWG (Isotopic Detection of Aminosugars With Glutamine) is a newly reported, in vivo, stable isotopic labeling strategy for quantitative glycomics of cultured cells. Detailed procedures are provided for glycan analysis using IDAWG including labeling, release of both N- and O-linked glycans, permethylation, and mass spectrometry analysis. The methods for data processing and calculations are also introduced here but have not yet been automated.
doi:10.1002/9780470559277.ch090207
PMCID: PMC3467102  PMID: 23061027
IDAWG; stable isotopic labeling; quantitative glycomics; cell culture; glycan analysis
13.  Mammalian O-Mannosylation: Unsolved Questions of Structure/Function 
Post-translational modification of polypeptides with glycans increases the diversity of the structures of proteins and imparts increased functional diversity. Here, we review the current literature on a relatively new O-glycosylation pathway, the mammalian O-mannosylation pathway. The importance of O-mannosylation is illustrated by the fact that O-mannose glycan structures play roles in a variety of processes including viral entry into cells, metastasis, cell adhesion, and neuronal development. Furthermore, mutations in the enzymes of this pathway are causal for a variety of congenital muscular dystrophies. Here we highlight the protein substrates, glycan structures, and enzymes involved in O-mannosylation as well as our gaps in understanding structure/function relationships in this biosynthetic pathway.
doi:10.1016/j.sbi.2011.09.001
PMCID: PMC3356693  PMID: 21945038
14.  Synthetic, Structural and Biosynthetic Studies of an Unusual Phospho-Glycopeptide Derived from α-Dystroglycan 
Journal of the American Chemical Society  2011;133(36):14418-14430.
Aberrant glycosylation of α-dystroglycan (α-DG) results in loss of interactions with the extracellular matrix and is central to the pathogenesis of several disorders. To examine protein glycosylation of α-DG, a facile synthetic approach has been developed for the preparation of unusual phosphorylated O-mannosyl glycopeptides derived from α-DG by a strategy in which properly protected phospho-mannosides are coupled with a Fmoc protected threonine derivative, followed by the use of the resulting derivatives in automated solid phase glycopeptide synthesis using hyper-acid sensitive Sieber amide resin. Synthetic efforts also provided a reduced phospho-trisaccharide and the NMR data of this derivative confirmed the proper structural assignment of the unusual phospho-glycan structure. The glycopeptides made it possible to explore factors that regulate the elaboration of critical glycans. It was established that a glycopeptide having a 6-phospho-O-mannosyl residue is not an acceptor for action by the enzyme POMGnT1, which attaches β(1,2)-GlcNAc to O-mannosyl moietes, whereas the unphosphorylated derivate was readily extended by the enzyme. This finding implies a specific sequence of events in determining the structural fate of the O-glycan. It has also been found that the activity of POMGnT1 is dependent on the location of the acceptor site in the context of the underlying polypeptide/glycopeptide sequence. Conformational analysis by NMR has shown that the O-mannosyl modification does not exert major conformational effect on the peptide backbone. It is, however, proposed that these residues, introduced at the early stages of glycoprotein glycosylation, have an ability to regulate the loci of subsequent O-GalNAc additions, which do exert conformational effects. The studies show that through access to discrete glycopeptide structures, it is possible to reveal complex regulation of O-glycan processing on α-DG that has significant implications both for its normal post-translational maturation, and the mechanisms of the pathologies associated with hypoglycosylated α-DG.
doi:10.1021/ja205473q
PMCID: PMC3176502  PMID: 21812486
15.  Combining High-energy C-trap Dissociation and Electron Transfer Dissociation for Protein O-GlcNAc Modification Site Assignment 
Journal of proteome research  2011;10(9):4088-4104.
Mass spectrometry-based studies of proteins that are post-translationally modified by O-linked β-N-acetylglucosamine (O-GlcNAc) are challenged in effectively identifying the sites of modification while simultaneously sequencing the peptides. Here we tested the hypothesis that a combination of high-energy C-trap dissociation (HCD) and electron transfer dissociation (ETD) could specifically target the O-GlcNAc modified peptides and elucidate the amino acid sequence while preserving the attached GlcNAc residue for accurate site assignment. By taking advantage of the recently characterized O-GlcNAc-specific IgG monoclonal antibodies and the combination of HCD and ETD fragmentation techniques, O-GlcNAc modified proteins were enriched from HEK293T cells and subsequently characterized using the LTQ Orbitrap Velos™ ETD (Thermo Fisher Scientific) mass spectrometer. In our dataset, 83 sites of O-GlcNAc modification are reported with high confidence confirming that the HCD/ETD combined approach is amenable to the detection and site assignment of O-GlcNAc modified peptides. Realizing HCD triggered ETD fragmentation on a linear ion trap/Orbitrap platform for more in-depth analysis and application of this technique to other post-translationally modified proteins are currently underway. Furthermore, this report illustrates that the O-GlcNAc transferase appears to demonstrate promiscuity with regards to the hydroxyl-containing amino acid modified in short stretches of primary sequence of the glycosylated polypeptides.
doi:10.1021/pr2002726
PMCID: PMC3172619  PMID: 21740066
O-GlcNAc; HCD; ETD; tandem mass spectrometry; site assignment; post-translational modification; glycosylation
16.  High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding* 
The Journal of Biological Chemistry  2012;287(27):22759-22770.
Background: Genetic alteration of muscle cell glycosylation in muscular dystrophy models has ameliorated disease.
Results: A high throughput screen identified a small molecule, lobeline, which altered muscle cell glycosylation and improved laminin binding.
Conclusion: Lobeline increased abundance of sarcolemmal glycoproteins and increased laminin binding in an N-glycan-dependent manner.
Significance: A novel approach revealed an unexpected role for N-glycans in muscle cell function.
Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function.
doi:10.1074/jbc.M111.334581
PMCID: PMC3391114  PMID: 22570487
Glycobiology; Glycosylation Inhibitors; Laminin; Lectin; Muscular Dystrophy; Duchenne Muscular Dystrophy; N-Glycan; Dystroglycan; Lobeline; Muscle
17.  The E2F-1 associated retinoblastoma-susceptibility gene product is modified by O-GlcNAc 
Amino acids  2010;40(3):877-883.
The retinoblastoma-susceptibility gene product (pRB) is a classical tumor suppressor. pRB regulates a number of cellular processes including proliferation, differentiation, and apoptosis. One of the essential mechanisms by which pRB, and the related p107 and p130 family members, act is through its interactions with the E2F class of transcription factors. E2F-1 transcription is necessary for entry into S-phase during the cell-cycle. pRB binds E2F-1 and represses transcription via recruitment of a histone deacetylase complex and by preventing co-activator complexes from binding E2F-1. Current dogma suggests that phosphorylation of pRB during mid- to late-G1 leads to release of E2F-1 and E2F-1 dependent transcriptional activation of essential S-phase genes. Here we show that pRB, and the related p107 protein, are modified by O-linked β-N-acetylglucosamine (O-GlcNAc) in an in vitro transcription/translation system. Furthermore, we show in vivo that pRB is more heavily glycosylated in G1 of the cell-cycle when pRB is known to be in an active, hypophosphorylated state. Finally, we demonstrate that E2F-1 associated pRB is modified by O-GlcNAc. These studies suggest that regulation of pRB function(s) may be controlled by dynamic O-GlcNAc modification, as well as phosphorylation.
doi:10.1007/s00726-010-0709-x
PMCID: PMC3030635  PMID: 20680651
O-GlcNAc; pRB; Cell cycle; E2F
18.  Myc orchestrates a regulatory network required for the establishment and maintenance of pluripotency 
Cell Cycle  2011;10(4):592-597.
Pluripotent stem cells (PSC s) are maintained by a complex regulatory network orchestrated by transcription factors, epigenetic modifiers and non-coding RNA s. Central to this regulatory network is the Myc family of transcription factors. Defining roles for Myc in PSC s has been problematic, but recently, a number of reports have provided insight in this area. An emerging picture now places Myc as a key regulator of the cell cycle, genomic maintenance and general metabolic activity in PSC s through its ability to directly regulate large numbers of target genes and more indirectly through control of microRNA s. One of Myc's main roles is to repress the activity of genes required for differentiation such as the endoderm master regulator, GATA 6. The general mechanism by which Myc activates target genes is well understood but a remaining major challenge is to understand how it represses gene activity. Here we discuss potential mechanisms for how Myc establishes and maintains the pluripotent state and incorporate proteomics data that supports a model where Myc acts as part of a regulatory network with epigenetic modifiers.
doi:10.4161/cc.10.4.14792
PMCID: PMC3173999  PMID: 21293186
myc; pluripotency; self-renewal; reprogramming; proteomics
19.  Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including α-actinin 4 
Clinical proteomics  2011;8(1):15.
Purpose
The objective of the present study is to identify proteins that change in the extent of the modification with O-linked N-acetylglucosamine (O-GlcNAcylation) in the kidney from diabetic model Goto-Kakizaki (GK) rats, and to discuss the relation between O-GlcNAcylation and the pathological condition in diabetes.
Methods
O-GlcNAcylated proteins were identified by two-dimensional gel electrophoresis, immunoblotting and peptide mass fingerprinting. The level of O-GlcNAcylation of these proteins was examined by immunoprecipitation, immunoblotting and in situ Proximity Ligation Assay (PLA).
Results
O-GlcNAcylated proteins that changed significantly in the degree of O-GlcNAcylation were identified as cytoskeletal proteins (α-actin, α-tubulin, α-actinin 4, myosin) and mitochondrial proteins (ATP synthase β, pyruvate carboxylase). The extent of O-GlcNAcylation of the above proteins increased in the diabetic kidney. Immunofluorescence and in situ PLA studies revealed that the levels of O-GlcNAcylation of actin, α-actinin 4 and myosin were significantly increased in the glomerulus and the proximal tubule of the diabetic kidney. Immunoelectron microscopy revealed that immunolabeling of α-actinin 4 is disturbed and increased in the foot process of podocytes of glomerulus and in the microvilli of proximal tubules.
Conclusion
These results suggest that changes in the O-GlcNAcylation of cytoskeletal proteins are closely associated with the morphological changes in the podocyte foot processes in the glomerulus and in microvilli of proximal tubules in the diabetic kidney. This is the first report to show that α-actinin 4 is O-GlcNAcylated. α-Actinin 4 will be a good marker protein to examine the relation between O-GlcNAcylation and diabetic nephropathy.
doi:10.1186/1559-0275-8-15
PMCID: PMC3224550  PMID: 21933451
O-GlcNAc modification; Hexosamine biosynthetic pathway; Kidney; Glomerulus; Cytoskeleton; α-actinin; GK Rat; Mass spectrometry; Proximity Ligation Assay
20.  Glycopeptide specific monoclonal antibodies suggest new roles for O-GlcNAc 
Nature chemical biology  2010;6(5):338-343.
Studies of post-translational modification by β-N-acetyl-D-glucosamine (O-GlcNAc) are hampered by a lack of efficient tools such as O-GlcNAc specific antibodies that can be employed for detection, isolation, and site localization. We have obtained a large panel of O-GlcNAc-specific IgG MAbs having a broad spectrum of binding partners by combining three-component immunogen methodology with hybridoma technology. Immunoprecipitation followed by large-scale shotgun proteomics led to the identification of more than 200 mammalian O-GlcNAc modified proteins, including a large number of novel glycoproteins. A substantial number of the glycoproteins were only enriched by one of the antibodies and this observation combined with results of inhibition ELISAs suggests that the antibodies in addition to their O-GlcNAc-dependence also appear to have different, but overlapping, local peptide determinants. The MAbs made it possible to delineate differentially modified proteins of liver in response to trauma-hemorrhage and resuscitation in a rat model.
doi:10.1038/nchembio.338
PMCID: PMC2857662  PMID: 20305658
O-GlcNAc; Immunogen; Glycopeptide; Proteomics; Post-translational Modification
21.  Hexosamine Flux, the O-GlcNAc Modification, and the Development of Insulin Resistance in Adipocytes 
Excess flux through the hexosamine biosynthesis pathway in adipocytes is a fundamental cause of “glucose toxicity” and the development of insulin resistance that leads to type II diabetes. Adipose tissue-specific elevation in hexosamine flux in animal models recapitulates whole-body insulin-resistant phenotypes, and increased hexosamine flux in adipocyte cell culture models impairs insulin-stimulated glucose uptake. Many studies have been devoted to unveiling the molecular mechanisms in adipocytes in response to excess hexosamine flux-mediated insulin resistance. As a major downstream event consuming and incorporating the final product of the hexosamine biosynthesis pathway, dynamic and inducible O-GlcNAc modification is emerging as a modulator of insulin sensitivity in adipocytes. Given that O-GlcNAc is implicated in both insulin-mediated signal transduction and transcriptional events essential for adipocytokine secretion, direct functional studies to pinpoint the roles of O-GlcNAc in the development of insulin resistance via excess flux through hexosamine biosynthesis pathway are needed.
doi:10.1016/j.mce.2009.09.022
PMCID: PMC2855202  PMID: 19799964
Hexosamine biosynthesis pathway; O-GlcNAc modification; insulin resistance; adipocyte; adipocytokine
22.  Drosophila Dystroglycan is a target of O-mannosyltransferase activity of two protein O-mannosyltransferases, Rotated Abdomen and Twisted 
Glycobiology  2009;20(3):381-394.
Recent studies highlighted an emerging possibility of using Drosophila as a model system for investigating the mechanisms of human congenital muscular dystrophies, called dystroglycanopathies, resulting from the abnormal glycosylation of α-dystroglycan. Several of these diseases are associated with defects in O-mannosylation, one of the most prominent types of α-dystroglycan glycosylation mediated by two protein O-mannosyltransferases. Drosophila appears to possess homologs of all essential components of the mammalian dystroglycan-mediated pathway; however, the glycosylation of Drosophila Dystroglycan (DG) has not yet been explored. In this study, we characterized the glycosylation of Drosophila DG using a combination of glycosidase treatments, lectin blots, trypsin digestion, and mass spectrometry analyses. Our results demonstrated that DG extracellular domain is O-mannosylated in vivo. We found that the concurrent in vivo activity of the two Drosophila protein O-mannosyltransferases, Rotated Abdomen and Twisted, is required for O-mannosylation of DG. While our experiments unambiguously determined some O-mannose sites far outside of the mucin-type domain of DG, they also provided evidence that DG bears a significant amount of O-mannosylation within its central region including the mucin-type domain, and that O-mannose can compete with O-GalNAc glycosylation of DG. We found that Rotated Abdomen and Twisted could potentiate in vivo the dominant-negative effect of DG extracellular domain expression on crossvein development, which suggests that O-mannosylation can modulate the ligand-binding activity of DG. Taken together these results demonstrated that O-mannosylation of Dystroglycan is an evolutionarily ancient mechanism conserved between Drosophila and humans, suggesting that Drosophila can be a suitable model system for studying molecular and genetic mechanisms underlying human dystroglycanopathies.
doi:10.1093/glycob/cwp189
PMCID: PMC2912551  PMID: 19969597
Drosophila; Dystroglycan; dystroglycanopathy; glycosylation; protein O-mannosylation
23.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex 
Cell  2009;139(5):945-956.
SUMMARY
Compelling evidence indicates that the CRISPR-Cas system protects prokaryotes from viruses and other potential genome invaders. This adaptive prokaryotic immune system arises from the clustered regularly interspaced short palindromic repeats (CRISPRs) found in prokaryotic genomes, which harbor short invader-derived sequences, and the CRISPR-associated (Cas) protein-coding genes. Here we have identified a CRISPR-Cas effector complex that is comprised of small invader-targeting RNAs from the CRISPR loci (termed prokaryotic silencing (psi)RNAs) and the RAMP module (or Cmr) Cas proteins. The psiRNA-Cmr protein complexes cleave complementary target RNAs at a fixed distance from the 3' end of the integral psiRNAs. In Pyrococcus furiosus, psiRNAs occur in two size forms that share a common 5' sequence tag but have distinct 3' ends that direct cleavage of a given target RNA at two distinct sites. Our results indicate that prokaryotes possess a unique RNA silencing system that functions by homology-dependent cleavage of invader RNAs.
doi:10.1016/j.cell.2009.07.040
PMCID: PMC2951265  PMID: 19945378
24.  O-Mannosyl Phosphorylation of Alpha-Dystroglycan is Required for Laminin Binding 
Science (New York, N.Y.)  2010;327(5961):88-92.
Alpha-dystroglycan is a cell-surface glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin-G domains and certain arenaviruses. Receptor binding is thought to be mediated by a post-translational modification, and defective binding with laminin underlies a subclass of congenital muscular dystrophy. Here, using mass spectrometry- and NMR-based structural analyses, we identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant alpha-dystroglycan, which was required for laminin binding. We demonstrated that patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly have defects in a post-phosphoryl modification of this phosphorylated O-linked mannose, and that this modification is mediated by the like-acetylglucosaminyltransferase (LARGE) protein. Our findings expand our understanding of the mechanisms that underlie congenital muscular dystrophy.
doi:10.1126/science.1180512
PMCID: PMC2978000  PMID: 20044576
25.  Intracellular protein glycosylation modulates insulin mediated lifespan in C. elegans 
Aging (Albany NY)  2010;2(10):678-690.
O-linked-β-N-acetylglucosamine (O-GlcNAc) modification is a regulatory, nuclear and cytoplasmic post-translational glycosylation of proteins associated with age-related diseases such as Alzheimer's, Parkinson's, and type II diabetes. Global elevation of O-GlcNAc levels on intracellular proteins can induce insulin resistance, the hallmark of type II diabetes, in mammalian systems. In C. elegans, attenuation of the insulin-like signal transduction pathway increases adult lifespan of the nematode. We demonstrate that the O-GlcNAc cycling enzymes OGT and OGA, which add and remove O-GlcNAc respectively, modulate lifespan in C. elegans. Median adult lifespan is increased in an oga-1 deletion strain while median adult life span is decreased upon ogt-1 deletion. The O-GlcNAc-mediated effect on nematode lifespan is dependent on the FoxO transcription factor DAF-16. DAF-16 is a key factor in the insulin-like signal transduction pathway to regulate reproductive development, lifespan, stress tolerance, and dauer formation in C. elegans. Our data indicates that O-GlcNAc cycling selectively influences only a subset of DAF-16 mediated phenotypes, including lifespan and oxidative stress resistance. We performed an affinity purification of O-GlcNAc-modified proteins and observed that a high percentage of these proteins are regulated by insulin signaling and/or impact insulin pathway functional outcomes, suggesting that the O-GlcNAc modification may control downstream effectors to modulate insulin pathway mediated cellular processes.
PMCID: PMC2993798  PMID: 20952811
C. elegans; lifespan; O-GlcNAc; OGT; OGA

Results 1-25 (30)