PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Quantification of the Blood Platelet Reactivity in the ADP-Induced Model of Non-Lethal Pulmonary Thromboembolism in Mice with the Use of Laser Doppler Flowmetry 
PLoS ONE  2016;11(1):e0146346.
Introduction
The paper describes an alternative method for quantification of in vivo ADP-induced thromboembolism. The aim of the studies was to develop a method of quantification which would not require either extravasation or labelling of platelets. Our proposed approach is based on the monitoring of changes of blood flow with the use of laser Doppler flowmetry.
Materials and Methods
Mice of C57Bl strain were used in the study. ADP was injected to the vena cava and blood flow was monitored with the use of a laser Doppler flowmeter in the mesentery. Measurements in platelet-depleted mice, mice pretreated with cangrelor, an ADP receptor antagonist, and eptifibatide, a blocker of fibrinogen binding to GPIIbIIIa, were conducted as the proof-of-concept in the performed experiments. Intravital microscopy and ex vivo imaging of organs was performed to identify the sites of aggregate formation resulting from ADP injection.
Results
The injection of ADP resulted in a dose-dependent reduction of the blood flow in the mesentery. These responses were fully attributable to blood platelet aggregation, as shown by the lack of the effect in platelet-depleted mice, and significantly reduced responses in mice pretreated with cangrelor and eptifibatide. No platelet aggregate formation in mesenteric vessels was revealed by intravital microscopy, while ex vivo imaging showed accumulation of fluorescent labelled platelets in the lung.
Conclusions
Injection of ADP to the venous system results in the formation of platelet aggregates predominantly in the lung. This results in reversible blood flow cessation in peripheral blood vessels. The measurement of this blood flow cessation in the mesentery allows indirect measurement of ADP-induced pulmonary thromboembolism. We suggest that this approach can be useful for in vivo screening for antiplatelet drug candidates.
doi:10.1371/journal.pone.0146346
PMCID: PMC4713441  PMID: 26751810
2.  The cardioprotective power of leaves 
Archives of Medical Science : AMS  2015;11(4):819-839.
Lack of physical activity, smoking and/or inappropriate diet can contribute to the increase of oxidative stress, in turn affecting the pathophysiology of cardiovascular diseases. Strong anti-oxidant properties of plant polyphenolic compounds might underlie their cardioprotective activity. This paper reviews recent findings on the anti-oxidant activity of plant leaf extracts and emphasizes their effects on blood platelets, leukocytes and endothelial cells – the targets orchestrating the development and progression of cardiovascular diseases. We also review the evidence linking supplementation with plant leaf extracts and the risk factors defining the metabolic syndrome. The data point to the importance of leaves as an alternative source of polyphenolic compounds in the human diet and their role in the prevention of cardiovascular diseases.
doi:10.5114/aoms.2015.53303
PMCID: PMC4548035  PMID: 26322095
anti-oxidants; cardiovascular diseases; leaf extracts; polyphenols
3.  Extract from Ribes nigrum leaves in vitro activates nitric oxide synthase (eNOS) and increases CD39 expression in human endothelial cells 
The aim of the present study was to evaluate whether blackcurrant leaf extract (BLE) modulates endothelium antithrombotic function, namely increases the expression/activity of ADPase (CD39) and augments the production of nitric oxide in human umbilical vein endothelial cells (HUVEC). It was found that BLE with proanthocyanidins (60 % of the total polyphenol content) increased the CD39-positive endothelial cell fraction (up to 10 % for 2.5 μg/ml, and up to 33 % for 15 μg/ml, p < 0.05 or less) in a concentration-dependent manner, and enhanced endothelial nitric oxide synthase (eNOS) activation (T495 phosphorylation decreased by 31 ± 6 % for 2.5 μg/ml and 48 ± 6 % for 15 μg/ml; S1177 phosphorylation increased by 13 ± 3 % for 2.5 μg/ml and 18 ± 7 % for 15 μg/ml, compared to untreated cells, p < 0.05 or less). Additionally, incubation for 24 or 48 h with BLE at a lower range of polyphenol concentrations, significantly increased cell viability with a maximal effect at 2.5 μg/ml (viability increased by 24.8 ± 1.0 % for 24 h and by 32.5 ± 2.7 % for 48-h time incubation, p < 0.0001). The increased CD39 expression and the increased eNOS activation in HUVEC can be regarded as the beneficial markers of the improvement of antiplatelet action of endothelial cells. Unexpectedly, these assumptions were not confirmed in the experimental model of platelet-endothelial cell interactions. These observations lead to the conclusion that BLE may improve endothelial cell viability at low physiological concentrations without affecting the antiplatelet action of endothelium.
doi:10.1007/s13105-014-0370-z
PMCID: PMC4254183  PMID: 25407137
Blackcurrant leaf extract; eNOS activation; CD39; ecto-ADPase; Endothelial cells; Cardiovascular disease
4.  Extract from Aronia melanocarpa fruits potentiates the inhibition of platelet aggregation in the presence of endothelial cells 
Introduction
Some polyphenolic compounds extracted from Aronia melanocarpa fruits (AM) have been reported to be cardioprotective agents. In this study we evaluated the ability of AM extract to increase the efficacy of human umbilical vein endothelial cells (HUVECs) to inhibit platelet functions in vitro.
Material and methods
This study encompasses two models of monitoring platelet reactivity: optical aggregation and platelet degranulation (monitored as the surface CD62P expression) in PRP upon the stimulation with ADP.
Results
We observed that only at low concentrations (5 µg/ml) did AM extract significantly improve antiplatelet action of HUVECs towards ADP-activated platelets in the aggregation test.
Conclusions
It is concluded that the potentiating effect of AM extract on the endothelial cell-mediated inhibition of platelet aggregation clearly depends on the used concentrations of Aronia-derived active compounds. Therefore, despite these encouraging preliminary outcomes on the beneficial effects of AM extract polyphenols, more profound dose-effect studies should certainly be considered before the implementation of Aronia-originating compounds in antiplatelet therapy and the prevention of cardiovascular diseases.
doi:10.5114/aoms.2010.13884
PMCID: PMC3281331  PMID: 22371737
Aronia melanocarpa (chokeberry); endothelial cells; platelet aggregation; polyphenols; platelet reactivity
5.  Multivariate relationships between international normalized ratio and vitamin K-dependent coagulation-derived parameters in normal healthy donors and oral anticoagulant therapy patients 
Thrombosis Journal  2003;1:7.
Background and objectives
International Normalized Ratio (INR) is a world-wide routinely used factor in the monitoring of oral anticoagulation treatment (OAT). However, it was reported that other factors, e. g. factor II, may even better reflect therapeutic efficacy of OAT and, therefore, may be potentialy useful for OAT monitoring. The primary purpose of this study was to characterize the associations of INR with other vitamin K-dependent plasma proteins in a heterogenous group of individuals, including healthy donors, patients on OAT and patients not receiving OAT. The study aimed also at establishing the influence of co-morbid conditions (incl. accompanying diseases) and co-medications (incl. different intensity of OAT) on INR.
Design and Methods
Two hundred and three subjects were involved in the study. Of these, 35 were normal healthy donors (group I), 73 were patients on medication different than OAT (group II) and 95 were patients on stable oral anticoagulant (acenocoumarol) therapy lasting for at least half a year prior to the study. The values of INR and activated partial thromboplastin time (APTT) ratio, as well as activities of FII, FVII, FX, protein C, and concentration of prothrombin F1+2 fragments and fibrinogen were obtained for all subjects. In statistical evaluation, the uni- and multivariate analyses were employed and the regression equations describing the obtained associations were estimated.
Results
Of the studied parameters, three (factors II, VII and X) appeared as very strong modulators of INR, protein C and prothrombin fragments F1+2 had moderate influence, whereas both APTT ratio and fibrinogen had no significant impact on INR variability. Due to collinearity and low tolerance of independent variables included in the multiple regression models, we routinely employed a ridge multiple regression model which compromises the minimal number of independent variables with the maximal overall determination coefficient. The best-fitted two-component model included FII and FVII activities and explained 90% of INR variability (compared to 93% in the 5-component model including all vitamin K-dependent proteins). Neither the presence of accompanying diseases nor the use of OAT nor any other medication (acetylsalicylic acid, statins, steroids, thyroxin) biased significantly these associations.
Conclusion
Among various vitamin K-dependent plasma proteins, the coagulation factors II, VII and X showed the most significant associations with INR. Of these variables, the two-component model, including factors II and VII, deserves special attention, as it largely explains the overall variability observed in INR estimates. The statistical power of this model is validated on virtue of the estimation that the revealed associations are rather universal and remain essentially unbiased by other compounding variables, including clinical status and medical treatment. Further, much broader population studies are needed to verify clinical usefulness of methods alternate or compounding to INR monitoring of OAT.
doi:10.1186/1477-9560-1-7
PMCID: PMC317378  PMID: 14969588
International Normalized Ratio (INR) of prothrombin time; clotting factors; protein C; prothrombin fragment F1+2; multivariate analysis

Results 1-5 (5)