PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Development and application of a DNA microarray-based yeast two-hybrid system 
Nucleic Acids Research  2012;41(3):1496-1507.
The yeast two-hybrid (Y2H) system is the most widely applied methodology for systematic protein–protein interaction (PPI) screening and the generation of comprehensive interaction networks. We developed a novel Y2H interaction screening procedure using DNA microarrays for high-throughput quantitative PPI detection. Applying a global pooling and selection scheme to a large collection of human open reading frames, proof-of-principle Y2H interaction screens were performed for the human neurodegenerative disease proteins huntingtin and ataxin-1. Using systematic controls for unspecific Y2H results and quantitative benchmarking, we identified and scored a large number of known and novel partner proteins for both huntingtin and ataxin-1. Moreover, we show that this parallelized screening procedure and the global inspection of Y2H interaction data are uniquely suited to define specific PPI patterns and their alteration by disease-causing mutations in huntingtin and ataxin-1. This approach takes advantage of the specificity and flexibility of DNA microarrays and of the existence of solid-related statistical methods for the analysis of DNA microarray data, and allows a quantitative approach toward interaction screens in human and in model organisms.
doi:10.1093/nar/gks1329
PMCID: PMC3561971  PMID: 23275563
2.  SUMO-2 and PIAS1 Modulate Insoluble Mutant Huntingtin Protein Accumulation 
Cell reports  2013;4(2):362-375.
SUMMARY
A key feature in Huntington disease (HD) is the accumulation of mutant Huntingtin (HTT) protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.
doi:10.1016/j.celrep.2013.06.034
PMCID: PMC3931302  PMID: 23871671
3.  HDAC4 Reduction: A Novel Therapeutic Strategy to Target Cytoplasmic Huntingtin and Ameliorate Neurodegeneration 
PLoS Biology  2013;11(11):e1001717.
HDAC4 histone deacetylase is found to associate with huntingtin in a polyQ-length dependent manner. Reduction of HDAC4 levels in mouse models of Huntington's disease (HD) delays cytoplasmic aggregation in the brain and improves the molecular pathology of HD, providing a potential new therapeutic target.
Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD), a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics.
Author Summary
Huntington's disease (HD) is a late-onset neurodegenerative disorder caused by protein-folding defects in the huntingtin protein. Mutations in huntingtin can result in extra-long tracts of the amino acid glutamine, resulting in aberrant interactions with other proteins and also causing huntingtin proteins to self-associate and -aggregate. The pathology of HD is therefore associated with nuclear and cytoplasmic aggregates. HDAC4 is a histone deacetylase protein traditionally associated with roles in transcription repression. The HDAC4 protein contains a glutamine-rich domain and in this work we find that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and that these proteins co-localise in cytoplasmic inclusions. Importantly, reducing HDAC4 levels delays cytoplasmic aggregate formation and rescues neuronal and cortico-striatal synaptic function in mouse models of HD. In addition, we observe improvements in motor coordination and neurological phenotypes, as well as increased lifespan in these mice. Nuclear huntingin aggregates or transcription regulation, however, remained unaffected when HDAC4 levels were reduced to enable these effects. Our results thus provide valuable insight into separating cytoplasmic and nuclear pathologies, and define a crucial role for cytoplasmic aggregations in HD progression. HDAC4 reduction presents a novel strategy for alleviating the toxicity of huntingtin protein aggregation, thereby influencing the molecular pathology of Huntington's disease. As there are currently no disease-modifying therapeutics available for Huntington's disease, we hope that this HDAC4-mediated regulation may be amenable to small-molecule therapeutics.
doi:10.1371/journal.pbio.1001717
PMCID: PMC3841096  PMID: 24302884
4.  Myc inhibition impairs autophagosome formation 
Human Molecular Genetics  2013;22(25):5237-5248.
Autophagy, a major clearance route for many long-lived proteins and organelles, has long been implicated in cancer development. Myc is a proto-oncogene often found to be deregulated in many cancers, and thus is an attractive target for design of cancer therapy. Therefore, understanding the relationship between anti-Myc strategies and autophagy will be important for development of effective therapy. Here, we show that Myc depletion inhibits autophagosome formation and impairs clearance of autophagy substrates. Myc suppression has an inhibitory effect on autophagy via reduction of c-Jun N-terminal kinase 1 (JNK1) and B-cell lymphoma 2 (Bcl2) phosphorylation. Additionally, the decrease in JNK1 phosphorylation observed with Myc knockdown is associated with a reduction in ROS production. Our data suggest that targeting Myc in cancer therapy might have the additional benefit of inhibiting autophagy in the case of therapy resistance associated with chemotherapy-induced autophagy.
doi:10.1093/hmg/ddt381
PMCID: PMC3842180  PMID: 23933736
5.  Dynamic Circadian Protein–Protein Interaction Networks Predict Temporal Organization of Cellular Functions 
PLoS Genetics  2013;9(3):e1003398.
Essentially all biological processes depend on protein–protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (∼24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner.
Author Summary
Circadian clocks are endogenous oscillators that drive daily rhythms in physiology, metabolism, and behavior. In mammals, circadian rhythms are generated within nearly every cell; and, although dysfunction of circadian clocks is associated with various diseases (including diabetes and cancer), the molecular mechanisms linking the clock machinery with output pathways are little understood. Since essentially all biological processes depend on protein–protein interactions, we investigated here on a systems-wide level how time-of-day-specific protein–protein interactions contribute to the temporal organization of cellular physiology. We constructed a circadian interactome using experimentally generated protein–protein interaction data and made this network dynamic by the incorporation of time-of-day-dependent expression data. Interestingly, systematic genetic network perturbation (RNAi and overexpression) suggests a crucial role for circadian components involved in dynamic interactions. Systems analysis of a global network revealed that interacting proteins are in the liver significantly more expressed at similar daytimes likely to restrict regulatory interactions to specific circadian phases within cells. Overall, circadian protein–protein interactions are predicted to dynamically connect important cellular processes (signal transduction, cell cycle, etc.) using—very often—protein modules with components co-expressed in time, shedding new light on the daily organization of cellular physiology.
doi:10.1371/journal.pgen.1003398
PMCID: PMC3610820  PMID: 23555304
6.  Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? 
The EPMA Journal  2013;4(1):5.
Neurodegenerative disorders show an increasing prevalence in a number of highly developed countries. Often, these diseases require life-long treatment mostly with drugs which are costly and mostly accompanied by more or less serious side-effects. Their heterogeneous manifestation, severity and outcome pose the need for individualised treatment options. There is an intensive search for new strategies not only for treating but also for preventing these diseases. Green tea and green tea extracts seem to be such a promising and safe alternative. However, data regarding the beneficial effects and possible underlying mechanism, specifically in clinical trials, are rare and rather controversial or non-conclusive. This review outlines the existing evidence from preclinical studies (cell and tissue cultures and animal models) and clinical trials regarding preventive and therapeutic effects of epigallcatechin-3-gallate in neurodegenerative diseases and considers antioxidative vs. pro-oxidative properties of the tea catechin important for dosage recommendations.
doi:10.1186/1878-5085-4-5
PMCID: PMC3585739  PMID: 23418936
Neurological diseases; Predictive and personalised medicine; Targeted prevention; Green tea; Epigallocatechin-3-gallate; Tailored therapy
7.  Identification of Human Proteins That Modify Misfolding and Proteotoxicity of Pathogenic Ataxin-1 
PLoS Genetics  2012;8(8):e1002897.
Proteins with long, pathogenic polyglutamine (polyQ) sequences have an enhanced propensity to spontaneously misfold and self-assemble into insoluble protein aggregates. Here, we have identified 21 human proteins that influence polyQ-induced ataxin-1 misfolding and proteotoxicity in cell model systems. By analyzing the protein sequences of these modifiers, we discovered a recurrent presence of coiled-coil (CC) domains in ataxin-1 toxicity enhancers, while such domains were not present in suppressors. This suggests that CC domains contribute to the aggregation- and toxicity-promoting effects of modifiers in mammalian cells. We found that the ataxin-1–interacting protein MED15, computationally predicted to possess an N-terminal CC domain, enhances spontaneous ataxin-1 aggregation in cell-based assays, while no such effect was observed with the truncated protein MED15ΔCC, lacking such a domain. Studies with recombinant proteins confirmed these results and demonstrated that the N-terminal CC domain of MED15 (MED15CC) per se is sufficient to promote spontaneous ataxin-1 aggregation in vitro. Moreover, we observed that a hybrid Pum1 protein harboring the MED15CC domain promotes ataxin-1 aggregation in cell model systems. In strong contrast, wild-type Pum1 lacking a CC domain did not stimulate ataxin-1 polymerization. These results suggest that proteins with CC domains are potent enhancers of polyQ-mediated protein misfolding and aggregation in vitro and in vivo.
Author Summary
Spinocerebellar ataxias (SCAs) are a group of inherited neurodegenerative diseases with around 30 subtypes, which are characterized by a progressive loss of cerebellar neurons. Neuronal death has been linked to the aggregation of mutated disease-causing proteins, such as ataxin-1 (ATXN1). Pathogenic ATXN1 contains an elongated glutamine stretch, which triggers spontaneous misfolding and self-assembly of the protein into aggregates. Earlier studies in lower organisms have discovered many non-human proteins that alter aggregation and/or toxicity of mutant ATXN1. Here, we combine an experimental screening approach with bioinformatics to find human proteins that modulate aggregation and toxicity of ATXN1. We identified 21 proteins affecting mutant ATXN1 in mammalian cells. Further characterization revealed that enhancers of ATXN1-mediated toxicity contain α-helical coiled-coil domains as structural motifs, while suppressors do not. Detailed studies with the ATXN1 interacting proteins MED15 and Pum1 finally demonstrated that coiled-coil domains are indeed critical for the aggregation and toxicity promoting effects of human proteins. Our study contributes to a deeper understanding of ATXN1 aggregation and SCA1 pathogenesis and highlights potential therapeutic targets for further investigations.
doi:10.1371/journal.pgen.1002897
PMCID: PMC3420947  PMID: 22916034
8.  Green tea halts progression of cardiac transthyretin amyloidosis: an observational report 
Clinical Research in Cardiology  2012;101(10):805-813.
Background
Treatment options in patients with amyloidotic transthyretin (ATTR) cardiomyopathy are limited. Epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea (GT), inhibits fibril formation from several amyloidogenic proteins in vitro. Thus, it might also halt progression of TTR amyloidosis. This is a single-center observational report on the effects of GT consumption in patients with ATTR cardiomopathy.
Methods
19 patients with ATTR cardiomyopathy were evaluated by standard blood tests, echocardiography, and cardiac MRI (n = 9) before and after consumption of GT and/or green tea extracts (GTE) for 12 months.
Results
Five patients were not followed up for reasons of death (n = 2), discontinuation of GT/GTE consumption (n = 2), and heart transplantation (n = 1). After 12 months no increase of left ventricular (LV) wall thickness and LV myocardial mass was observed by echocardiography. In the subgroup of patients evaluated by cardiac MRI a mean decrease of LV myocardial mass (−12.5 %) was detected in all patients. This was accompanied by an increase of mean mitral annular systolic velocity of 9 % in all 14 patients. Total cholesterol (191.9 ± 8.9 vs. 172.7 ± 9.4 mg/dL; p < 0.01) and LDL cholesterol (105.8 ± 7.6 vs. 89.5 ± 8.0 mg/dL; p < 0.01) decreased significantly during the observational period. No serious adverse effects were reported by any of the participants.
Conclusions
Our observation suggests an inhibitory effect of GT and/or GTE on the progression of cardiac amyloidosis. We propose a randomized placebo-controlled investigation to confirm our observation.
Electronic supplementary material
The online version of this article (doi:10.1007/s00392-012-0463-z) contains supplementary material, which is available to authorized users.
doi:10.1007/s00392-012-0463-z
PMCID: PMC3445797  PMID: 22584381
Cardiomyopathy; Green tea; Transthyretin-derived amyloidosis; Epigallocatechin-3-gallate
9.  HIPPIE: Integrating Protein Interaction Networks with Experiment Based Quality Scores 
PLoS ONE  2012;7(2):e31826.
Protein function is often modulated by protein-protein interactions (PPIs) and therefore defining the partners of a protein helps to understand its activity. PPIs can be detected through different experimental approaches and are collected in several expert curated databases. These databases are used by researchers interested in examining detailed information on particular proteins. In many analyses the reliability of the characterization of the interactions becomes important and it might be necessary to select sets of PPIs of different confidence levels. To this goal, we generated HIPPIE (Human Integrated Protein-Protein Interaction rEference), a human PPI dataset with a normalized scoring scheme that integrates multiple experimental PPI datasets. HIPPIE's scoring scheme has been optimized by human experts and a computer algorithm to reflect the amount and quality of evidence for a given PPI and we show that these scores correlate to the quality of the experimental characterization. The HIPPIE web tool (available at http://cbdm.mdc-berlin.de/tools/hippie) allows researchers to do network analyses focused on likely true PPI sets by generating subnetworks around proteins of interest at a specified confidence level.
doi:10.1371/journal.pone.0031826
PMCID: PMC3279424  PMID: 22348130
10.  Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks 
Nucleic Acids Research  2012;40(10):4273-4287.
Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions.
doi:10.1093/nar/gks011
PMCID: PMC3378862  PMID: 22287626
11.  Correction: Ku70 Alleviates Neurodegeneration in Drosophila Models of Huntington's Disease 
PLoS ONE  2012;7(1):10.1371/annotation/e436994f-3b22-4b35-bd29-49992f64a584.
doi:10.1371/annotation/e436994f-3b22-4b35-bd29-49992f64a584
PMCID: PMC3261226
12.  A Novel Multiplex Cell Viability Assay for High-Throughput RNAi Screening 
PLoS ONE  2011;6(12):e28338.
Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%–58.7±14.4% when two indicators were combined and 40–48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost.
doi:10.1371/journal.pone.0028338
PMCID: PMC3230607  PMID: 22162763
13.  Ku70 Alleviates Neurodegeneration in Drosophila Models of Huntington's Disease 
PLoS ONE  2011;6(11):e27408.
DNA damage accumulates in genome DNA during the long life of neurons, thus DNA damage repair is indispensable to keep normal functions of neurons. We previously reported that Ku70, a critical molecule for DNA double strand break (DSB) repair, is involved in the pathology of Huntington's disease (HD). Mutant huntingtin (Htt) impaired Ku70 function via direct interaction, and Ku70 supplementation recovered phenotypes of a mouse HD model. In this study, we generate multiple Drosophila HD models that express mutant huntingtin (Htt) in eye or motor neuron by different drivers and show various phenotypes. In such fly models, Ku70 co-expression recovers lifespan, locomotive activity and eye degeneration. In contrast, Ku70 reduction by heterozygous null mutation or siRNA-mediated knock down accelerates lifespan shortening and locomotion disability. These results collectively support that Ku70 is a critical mediator of the HD pathology and a candidate therapeutic target in HD.
doi:10.1371/journal.pone.0027408
PMCID: PMC3210167  PMID: 22096569
14.  Mutant huntingtin impairs Ku70-mediated DNA repair 
The Journal of Cell Biology  2010;189(3):425-443.
Mutant huntingtin prevents interaction of the DNA damage repair complex component Ku70 with damaged DNA, blocking repair of double-strand breaks.
DNA repair defends against naturally occurring or disease-associated DNA damage during the long lifespan of neurons and is implicated in polyglutamine disease pathology. In this study, we report that mutant huntingtin (Htt) expression in neurons causes double-strand breaks (DSBs) of genomic DNA, and Htt further promotes DSBs by impairing DNA repair. We identify Ku70, a component of the DNA damage repair complex, as a mediator of the DNA repair dysfunction in mutant Htt–expressing neurons. Mutant Htt interacts with Ku70, impairs DNA-dependent protein kinase function in nonhomologous end joining, and consequently increases DSB accumulation. Expression of exogenous Ku70 rescues abnormal behavior and pathological phenotypes in the R6/2 mouse model of Huntington’s disease (HD). These results collectively suggest that Ku70 is a critical regulator of DNA damage in HD pathology.
doi:10.1083/jcb.200905138
PMCID: PMC2867301  PMID: 20439996
15.  An empirical framework for binary interactome mapping 
Nature methods  2008;6(1):83-90.
Several attempts have been made at systematically mapping protein-protein interaction, or “interactome” networks. However, it remains difficult to assess the quality and coverage of existing datasets. We describe a framework that uses an empirically-based approach to rigorously dissect quality parameters of currently available human interactome maps. Our results indicate that high-throughput yeast two-hybrid (HT-Y2H) interactions for human are superior in precision to literature-curated interactions supported by only a single publication, suggesting that HT-Y2H is suitable to map a significant portion of the human interactome. We estimate that the human interactome contains ~130,000 binary interactions, most of which remain to be mapped. Similar to estimates of DNA sequence data quality and genome size early in the human genome project, estimates of protein interaction data quality and interactome size are critical to establish the magnitude of the task of comprehensive human interactome mapping and to illuminate a path towards this goal.
doi:10.1038/nmeth.1280
PMCID: PMC2872561  PMID: 19060904
16.  Pathogenic Polyglutamine Tracts Are Potent Inducers of Spontaneous Sup35 and Rnq1 Amyloidogenesis 
PLoS ONE  2010;5(3):e9642.
The glutamine/asparagine (Q/N)-rich yeast prion protein Sup35 has a low intrinsic propensity to spontaneously self-assemble into ordered, β-sheet-rich amyloid fibrils. In yeast cells, de novo formation of Sup35 aggregates is greatly facilitated by high protein concentrations and the presence of preformed Q/N-rich protein aggregates that template Sup35 polymerization. Here, we have investigated whether aggregation-promoting polyglutamine (polyQ) tracts can stimulate the de novo formation of ordered Sup35 protein aggregates in the absence of Q/N-rich yeast prions. Fusion proteins with polyQ tracts of different lengths were produced and their ability to spontaneously self-assemble into amlyloid structures was analyzed using in vitro and in vivo model systems. We found that Sup35 fusions with pathogenic (≥54 glutamines), as opposed to non-pathogenic (19 glutamines) polyQ tracts efficiently form seeding-competent protein aggregates. Strikingly, polyQ-mediated de novo assembly of Sup35 protein aggregates in yeast cells was independent of pre-existing Q/N-rich protein aggregates. This indicates that increasing the content of aggregation-promoting sequences enhances the tendency of Sup35 to spontaneously self-assemble into insoluble protein aggregates. A similar result was obtained when pathogenic polyQ tracts were linked to the yeast prion protein Rnq1, demonstrating that polyQ sequences are generic inducers of amyloidogenesis. In conclusion, long polyQ sequences are powerful molecular tools that allow the efficient production of seeding-competent amyloid structures.
doi:10.1371/journal.pone.0009642
PMCID: PMC2835767  PMID: 20224794
17.  Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin 
PLoS Computational Biology  2009;5(3):e1000304.
A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments.
Author Summary
Many proteins have an elongated structural domain formed by a stack of alpha helices (alpha-rod), often found to interact with other proteins. The identification of an alpha-rod in a protein can therefore tell something about both the function and the structure of that protein. Though alpha-rods can be readily identified from the structure of proteins, for the vast majority of known proteins this is unavailable, and we have to use their amino acid sequence. Because alpha-rods have highly variable sequences, commonly used methods of domain identification by sequence similarity have difficulty detecting them. However, alpha-rods do have specific patterns of amino acid properties along their sequences, so we used a computational method based on a neural network to learn these patterns. We illustrate how this method finds novel instances of the domain in proteins from a wide range of organisms. We performed detailed analysis of huntingtin, the protein mutated in Huntington's chorea, a neurodegenerative disease. The function of huntingtin remains a mystery partially due to the lack of knowledge about its structure. Therefore, we defined three alpha-rods in this protein and experimentally verified how they interact with each other, a novel result that opens new avenues for huntingtin research.
doi:10.1371/journal.pcbi.1000304
PMCID: PMC2647740  PMID: 19282972
18.  Glial Cell Lineage Expression of Mutant Ataxin-1 and Huntingtin Induces Developmental and Late-Onset Neuronal Pathologies in Drosophila Models 
PLoS ONE  2009;4(1):e4262.
Background
In several neurodegenerative disorders, toxic effects of glial cells on neurons are implicated. However the generality of the non-cell autonomous pathologies derived from glial cells has not been established, and the specificity among different neurodegenerative disorders remains unknown.
Methodology/Principal Findings
We newly generated Drosophila models expressing human mutant huntingtin (hHtt103Q) or ataxin-1 (hAtx1-82Q) in the glial cell lineage at different stages of differentiation, and analyzed their morphological and behavioral phenotypes. To express hHtt103Q and hAtx1-82Q, we used 2 different Gal4 drivers, gcm-Gal4 and repo-Gal4. Gcm-Gal4 is known to be a neuroglioblast/glioblast-specific driver whose effect is limited to development. Repo-Gal4 is known to be a pan-glial driver and the expression starts at glioblasts and continues after terminal differentiation. Gcm-Gal4-induced hHtt103Q was more toxic than repo-Gal4-induced hHtt103Q from the aspects of development, locomotive activity and survival of flies. When hAtx1-82Q was expressed by gcm- or repo-Gal4 driver, no fly became adult. Interestingly, the head and brain sizes were markedly reduced in a part of pupae expressing hAtx1-82Q under the control of gcm-Gal4, and these pupae showed extreme destruction of the brain structure. The other pupae expressing hAtx1-82Q also showed brain shrinkage and abnormal connections of neurons. These results suggested that expression of polyQ proteins in neuroglioblasts provided a remarkable effect on the developmental and adult brains, and that glial cell lineage expression of hAtx1-82Q was more toxic than that of hHtt103Q in our assays.
Conclusion/Significance
All these studies suggested that the non-cell autonomous effect of glial cells might be a common pathology shared by multiple neurodegenerative disorders. In addition, the fly models would be available for analyzing molecular pathologies and developing novel therapeutics against the non-cell autonomous polyQ pathology. In conclusion, our novel fly models have extended the non-cell autonomous pathology hypothesis as well as the developmental effect hypothesis to multiple polyQ diseases. The two pathologies might be generally shared in neurodegeneration.
doi:10.1371/journal.pone.0004262
PMCID: PMC2622762  PMID: 19165334
19.  UniHI 4: new tools for query, analysis and visualization of the human protein–protein interactome 
Nucleic Acids Research  2008;37(Database issue):D657-D660.
Human protein interaction maps have become important tools of biomedical research for the elucidation of molecular mechanisms and the identification of new modulators of disease processes. The Unified Human Interactome database (UniHI, http://www.unihi.org) provides researchers with a comprehensive platform to query and access human protein–protein interaction (PPI) data. Since its first release, UniHI has considerably increased in size. The latest update of UniHI includes over 250 000 interactions between ∼22 300 unique proteins collected from 14 major PPI sources. However, this wealth of data also poses new challenges for researchers due to the complexity of interaction networks retrieved from the database. We therefore developed several new tools to query, analyze and visualize human PPI networks. Most importantly, UniHI allows now the construction of tissue-specific interaction networks and focused querying of canonical pathways. This will enable researchers to target their analysis and to prioritize candidate proteins for follow-up studies.
doi:10.1093/nar/gkn841
PMCID: PMC2686569  PMID: 18984619
20.  The Opitz syndrome gene product MID1 assembles a microtubule-associated ribonucleoprotein complex 
Human Genetics  2008;123(2):163-176.
Opitz BBB/G syndrome (OS) is a heterogenous malformation syndrome mainly characterised by hypertelorism and hypospadias. In addition, patients may present with several other defects of the ventral midline such as cleft lip and palate and congenital heart defects. The syndrome-causing gene encodes the X-linked E3 ubiquitin ligase MID1 that mediates ubiquitin-specific modification and degradation of the catalytic subunit of the translation regulator protein phosphatase 2A (PP2A). Here, we show that the MID1 protein also associates with elongation factor 1α (EF-1α) and several other proteins involved in mRNA transport and translation, including RACK1, Annexin A2, Nucleophosmin and proteins of the small ribosomal subunits. Mutant MID1 proteins as found in OS patients lose the ability to interact with EF-1α. The composition of the MID1 protein complex was determined by several independent methods: (1) yeast two-hybrid screening and (2) immunofluorescence, (3) a biochemical approach involving affinity purification of the complex, (4) co-fractionation in a microtubule assembly assay and (5) immunoprecipitation. Moreover, we show that the cytoskeleton-bound MID1/translation factor complex specifically associates with G- and U-rich RNAs and incorporates MID1 mRNA, thus forming a microtubule-associated ribonucleoprotein (RNP) complex. Our data suggest a novel function of the OS gene product in directing translational control to the cytoskeleton. The dysfunction of this mechanism would lead to malfunction of microtubule-associated protein translation and to the development of OS.
Electronic supplementary material
The online version of this article (doi:10.1007/s00439-007-0456-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s00439-007-0456-6
PMCID: PMC3774420  PMID: 18172692
21.  UniHI: an entry gate to the human protein interactome 
Nucleic Acids Research  2006;35(Database issue):D590-D594.
Systematic mapping of protein–protein interactions has become a central task of functional genomics. To map the human interactome, several strategies have recently been pursued. The generated interaction datasets are valuable resources for scientists in biology and medicine. However, comparison reveals limited overlap between different interaction networks. This divergence obstructs usability, as researchers have to interrogate numerous heterogeneous datasets to identify potential interaction partners for proteins of interest. To facilitate direct access through a single entry gate, we have started to integrate currently available human protein interaction data in an easily accessible online database. It is called UniHI (Unified Human Interactome) and is available at . At present, it is based on 10 major interaction maps derived by computational and experimental methods. It includes more than 150 000 distinct interactions between more than 17 000 unique human proteins. UniHI provides researchers with a flexible integrated tool for finding and using comprehensive information about the human interactome.
doi:10.1093/nar/gkl817
PMCID: PMC1781159  PMID: 17158159
22.  Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73 
The Journal of Cell Biology  2006;172(4):589-604.
Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis, necrosis, or autophagy. The progression of TRIAD was extremely slow in comparison with other types of cell death. Gene expression profiling revealed the reduction of full-length yes-associated protein (YAP), a p73 cofactor to promote apoptosis, as specific to TRIAD. Furthermore, novel neuron-specific YAP isoforms (YAPΔCs) were sustained during TRIAD to suppress neuronal death in a dominant-negative fashion. YAPΔCs and activated p73 were colocalized in the striatal neurons of HD patients and mutant huntingtin (htt) transgenic mice. YAPΔCs also markedly attenuated Htt-induced neuronal death in primary neuron and Drosophila melanogaster models. Collectively, transcriptional repression induces a novel prototype of neuronal death associated with the changes of YAP isoforms and p73, which might be relevant to the HD pathology.
doi:10.1083/jcb.200509132
PMCID: PMC2063678  PMID: 16461361
23.  Nuclear Oncoprotein Prothymosin α Is a Partner of Keap1: Implications for Expression of Oxidative Stress-Protecting Genes 
Molecular and Cellular Biology  2005;25(3):1089-1099.
Animal cells counteract oxidative stress and electrophilic attack through coordinated expression of a set of detoxifying and antioxidant enzyme genes mediated by transcription factor Nrf2. In unstressed cells, Nrf2 appears to be sequestered in the cytoplasm via association with an inhibitor protein, Keap1. Here, by using the yeast two-hybrid screen, human Keap1 has been identified as a partner of the nuclear protein prothymosin α. The in vivo and in vitro data indicated that the prothymosin α-Keap1 interaction is direct, highly specific, and functionally relevant. Furthermore, we showed that Keap1 is a nuclear-cytoplasmic shuttling protein equipped with a nuclear export signal that is important for its inhibitory action. Prothymosin α was able to liberate Nrf2 from the Nrf2-Keap1 inhibitory complex in vitro through competition with Nrf2 for binding to the same domain of Keap1. In vivo, the level of Nrf2-dependent transcription was correlated with the intracellular level of prothymosin α by using prothymosin α overproduction and mRNA interference approaches. Our data attribute to prothymosin α the role of intranuclear dissociator of the Nrf2-Keap1 complex, thus revealing a novel function for prothymosin α and adding a new dimension to the molecular mechanisms underlying expression of oxidative stress-protecting genes.
doi:10.1128/MCB.25.3.1089-1099.2005
PMCID: PMC544000  PMID: 15657435
24.  Counting CAG repeats in the Huntington’s disease gene by restriction endonuclease EcoP15I cleavage 
Nucleic Acids Research  2002;30(16):e83.
Huntington’s disease (HD) is a progressive neurodegenerative disorder with autosomal-dominant inheritance. The disease is caused by a CAG trinucleotide repeat expansion located in the first exon of the HD gene. The CAG repeat is highly polymorphic and varies from 6 to 37 repeats on chromosomes of unaffected individuals and from more than 30 to 180 repeats on chromosomes of HD patients. In this study, we show that the number of CAG repeats in the HD gene can be determined by restriction of the DNA with the endonuclease EcoP15I and subsequent analysis of the restriction fragment pattern by electrophoresis through non-denaturing polyacrylamide gels using the ALFexpress DNA Analysis System. CAG repeat numbers in the normal (30 and 35 repeats) as well as in the pathological range (81 repeats) could be accurately counted using this assay. Our results suggest that this high-resolution method can be used for the exact length determination of CAG repeats in HD genes as well as in genes affected in related CAG repeat disorders.
PMCID: PMC134256  PMID: 12177311
25.  Huntington's disease: from gene to potential therapy 
Huntington's disease (HD) is a progressive, late-onset neurodegenerative illness with autosomal dominant inheritance that affects one in 10 000 individuals in Western Europe. The disease is caused by a polyglutamine repeat expansion located in the N-terminal region of the huntingtin protein. The mutation is likely to act by a gain of function, but the molecular mechanisms by which it leads to neuronal dysfunction and cell death are not yet known. The normal function of huntingtin in cell metabolism is also unclear. There is no therapy for HD. Research on HD should help elucidate the pathogenetic mechanism of this illness in order to develop successful treatments to prevent or slow down symptoms. This article presents new results in HD research focusing on in vivo and in vitro model systems, potential molecular mechanisms of HD, and the development of therapeutic strategies.
PMCID: PMC3181644  PMID: 22034471
aggregation; fibrillogenesis; Huntington's disease; neurodegeneration; polyglutamine

Results 1-25 (27)