PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A 50-Gene Intrinsic Subtype Classifier for Prognosis and Prediction of Benefit from Adjuvant Tamoxifen 
Purpose
Gene expression profiling classifies breast cancer into intrinsic subtypes based on the biology of the underlying disease pathways. We have used material from a prospective randomized trial of tamoxifen versus placebo in premenopausal women with primary breast cancer (NCIC CTG MA.12) to evaluate the prognostic and predictive significance of intrinsic subtypes identified by both the PAM50 gene set and by immunohistochemistry.
Experimental Design
Total RNA from 398 of 672 (59%) patients was available for intrinsic subtyping with a quantitative reverse transcriptase PCR (qRT-PCR) 50-gene predictor (PAM50) for luminal A, luminal B, HER-2–enriched, and basal-like subtypes. A tissue microarray was also constructed from 492 of 672 (73%) of the study population to assess a panel of six immunohistochemical IHC antibodies to define the same intrinsic subtypes.
Results
Classification into intrinsic subtypes by the PAM50 assay was prognostic for both disease-free survival (DFS; P = 0.0003) and overall survival (OS; P = 0.0002), whereas classification by the IHC panel was not. Luminal subtype by PAM50 was predictive of tamoxifen benefit [DFS: HR, 0.52; 95% confidence interval (CI), 0.32–0.86 vs. HR, 0.80; 95% CI, 0.50–1.29 for nonluminal subtypes], although the interaction test was not significant (P = 0.24), whereas neither subtyping by central immunohistochemistry nor by local estrogen receptor (ER) or progesterone receptor (PR) status were predictive. Risk of relapse (ROR) modeling with the PAM50 assay produced a continuous risk score in both node-negative and node-positive disease.
Conclusions
In the MA.12 study, intrinsic subtype classification by qRT-PCR with the PAM50 assay was superior to IHC profiling for both prognosis and prediction of benefit from adjuvant tamoxifen.
doi:10.1158/1078-0432.CCR-12-0286
PMCID: PMC3743663  PMID: 22711706
2.  The origin and evolution of mutations in Acute Myeloid Leukemia 
Cell  2012;150(2):264-278.
Summary
Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability, driving clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of AML samples with a known initiating event (PML-RARA) vs. normal karyotype AML samples, and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is “captured” as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.
doi:10.1016/j.cell.2012.06.023
PMCID: PMC3407563  PMID: 22817890
3.  Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing 
Nature  2012;481(7382):506-510.
Summary
Most patients with acute myeloid leukemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level1,2. To determine the mutational spectrum associated with relapse, we sequenced the primary tumor and relapse genomes from 8 AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to precisely define clonality and clonal evolution patterns at relapse. Besides discovering novel, recurrently mutated genes (e.g. WAC, SMC3, DIS3, DDX41, and DAXX) in AML, we found two major clonal evolution patterns during AML relapse: 1) the founding clone in the primary tumor gained mutations and evolved into the relapse clone, or 2) a subclone of the founding clone survived initial therapy, gained additional mutations, and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific vs. primary tumor mutations in all 8 cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped in part by the chemotherapy that the patients receive to establish and maintain remissions.
doi:10.1038/nature10738
PMCID: PMC3267864  PMID: 22237025
4.  A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor positive breast cancer 
Purpose
To compare clinical, immunohistochemical and gene expression models of prognosis applicable to formalin-fixed, paraffin-embedded blocks in a large series of estrogen receptor positive breast cancers, from patients uniformly treated with adjuvant tamoxifen.
Methods
qRT-PCR assays for 50 genes identifying intrinsic breast cancer subtypes were completed on 786 specimens linked to clinical (median followup 11.7 years) and immunohistochemical (ER, PR, HER2, Ki67) data. Performance of predefined intrinsic subtype and Risk-Of-Relapse scores was assessed using multivariable Cox models and Kaplan-Meier analysis. Harrell’s C index was used to compare fixed models trained in independent data sets, including proliferation signatures.
Results
Despite clinical ER positivity, 10% of cases were assigned to non-Luminal subtypes. qRT-PCR signatures for proliferation genes gave more prognostic information than clinical assays for hormone receptors or Ki67. In Cox models incorporating standard prognostic variables, hazard ratios for breast cancer disease specific survival over the first 5 years of followup, relative to the most common Luminal A subtype, are 1.99 (95% CI: 1.09–3.64) for Luminal B, 3.65 (1.64–8.16) for HER2-enriched and 17.71 (1.71–183.33) for the basal like subtype. For node-negative disease, PAM50 qRT-PCR based risk assignment weighted for tumor size and proliferation identifies a group with >95% 10 yr survival without chemotherapy. In node positive disease, PAM50-based prognostic models were also superior.
Conclusion
The PAM50 gene expression test for intrinsic biological subtype can be applied to large series of formalin-fixed paraffin-embedded breast cancers, and gives more prognostic information than clinical factors and immunohistochemistry using standard cutpoints.
doi:10.1158/1078-0432.CCR-10-1282
PMCID: PMC2970720  PMID: 20837693
5.  Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome 
The New England journal of medicine  2009;361(11):1058-1066.
BACKGROUND
The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known.
METHODS
We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome.
RESULTS
We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis.
CONCLUSIONS
By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.
doi:10.1056/NEJMoa0903840
PMCID: PMC3201812  PMID: 19657110
6.  DNMT3A Mutations in Acute Myeloid Leukemia 
The New England journal of medicine  2010;363(25):2424-2433.
BACKGROUND
The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown.
METHODS
Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations.
RESULTS
A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis.
CONCLUSIONS
DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.)
doi:10.1056/NEJMoa1005143
PMCID: PMC3201818  PMID: 21067377
7.  Use of whole genome sequencing to diagnose a cryptic fusion oncogene 
Context
Whole genome sequencing (WGS) is becoming increasingly available for research purposes, but it has not yet been routinely used for clinical diagnosis.
Object
To determine whether whole genome sequencing can identify cryptic, actionable mutations in a clinically relevant time frame.
Design, Setting, and Patient
We were referred a difficult diagnostic case of acute promyelocytic leukemia with no pathogenic X-RARA fusion identified by routine metaphase cytogenetics or interphase FISH. The patient was enrolled in an IRB approved protocol, with consent specifically tailored to the implications of whole genome sequencing. The protocol employs a ‘movable firewall,’ which maintains patient anonymity within the entire research team, but allows the research team to communicate medically relevant information to the treating physician.
Main Outcome Measure
Clinical relevance of whole genome sequencing and time to communicate validated results to the treating physician.
Results
Massively parallel paired-end sequencing allowed us to identify a cytogenetically cryptic event: 77 kilobases from chromosome 15 was inserted en bloc into the second intron of the RARA gene on chromosome 17, resulting in a classic bcr3 PML-RARA fusion gene. RT-PCR subsequently validated the expression of the fusion transcript. Novel FISH probes identified two additional cases of t(15;17)-negative acute promyelocytic leukemia that had cytogenetically invisible insertions. Whole genome sequencing and validation were completed in seven weeks, and changed the treatment plan for the patient.
Conclusions
Whole genome sequencing can identify cytogenetically invisible oncogenes in a clinically relevant timeframe.
doi:10.1001/jama.2011.497
PMCID: PMC3156695  PMID: 21505136
8.  Sequencing a mouse acute promyelocytic leukemia genome reveals genetic events relevant for disease progression 
The Journal of Clinical Investigation  2011;121(4):1445-1455.
Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML). It is characterized by the t(15;17)(q22;q11.2) chromosomal translocation that creates the promyelocytic leukemia–retinoic acid receptor α (PML-RARA) fusion oncogene. Although this fusion oncogene is known to initiate APL in mice, other cooperating mutations, as yet ill defined, are important for disease pathogenesis. To identify these, we used a mouse model of APL, whereby PML-RARA expressed in myeloid cells leads to a myeloproliferative disease that ultimately evolves into APL. Sequencing of a mouse APL genome revealed 3 somatic, nonsynonymous mutations relevant to APL pathogenesis, of which 1 (Jak1 V657F) was found to be recurrent in other affected mice. This mutation was identical to the JAK1 V658F mutation previously found in human APL and acute lymphoblastic leukemia samples. Further analysis showed that JAK1 V658F cooperated in vivo with PML-RARA, causing a rapidly fatal leukemia in mice. We also discovered a somatic 150-kb deletion involving the lysine (K)-specific demethylase 6A (Kdm6a, also known as Utx) gene, in the mouse APL genome. Similar deletions were observed in 3 out of 14 additional mouse APL samples and 1 out of 150 human AML samples. In conclusion, whole genome sequencing of mouse cancer genomes can provide an unbiased and comprehensive approach for discovering functionally relevant mutations that are also present in human leukemias.
doi:10.1172/JCI45284
PMCID: PMC3069786  PMID: 21436584
9.  Genome Remodeling in a Basal-like Breast Cancer Metastasis and Xenograft 
Nature  2010;464(7291):999-1005.
Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumor progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumor, a brain metastasis, and a xenograft derived from the primary tumor. The metastasis contained two de novo mutations and a large deletion not present in the primary tumor, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumor mutations, and displayed a mutation enrichment pattern that paralleled the metastasis (16 of 20 genes). Two overlapping large deletions, encompassing CTNNA1, were present in all three tumor samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared to the primary tumor suggest that secondary tumors may arise from a minority of cells within the primary.
doi:10.1038/nature08989
PMCID: PMC2872544  PMID: 20393555
10.  Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes 
Journal of Clinical Oncology  2009;27(8):1160-1167.
Purpose
To improve on current standards for breast cancer prognosis and prediction of chemotherapy benefit by developing a risk model that incorporates the gene expression–based “intrinsic” subtypes luminal A, luminal B, HER2-enriched, and basal-like.
Methods
A 50-gene subtype predictor was developed using microarray and quantitative reverse transcriptase polymerase chain reaction data from 189 prototype samples. Test sets from 761 patients (no systemic therapy) were evaluated for prognosis, and 133 patients were evaluated for prediction of pathologic complete response (pCR) to a taxane and anthracycline regimen.
Results
The intrinsic subtypes as discrete entities showed prognostic significance (P = 2.26E-12) and remained significant in multivariable analyses that incorporated standard parameters (estrogen receptor status, histologic grade, tumor size, and node status). A prognostic model for node-negative breast cancer was built using intrinsic subtype and clinical information. The C-index estimate for the combined model (subtype and tumor size) was a significant improvement on either the clinicopathologic model or subtype model alone. The intrinsic subtype model predicted neoadjuvant chemotherapy efficacy with a negative predictive value for pCR of 97%.
Conclusion
Diagnosis by intrinsic subtype adds significant prognostic and predictive information to standard parameters for patients with breast cancer. The prognostic properties of the continuous risk score will be of value for the management of node-negative breast cancers. The subtypes and risk score can also be used to assess the likelihood of efficacy from neoadjuvant chemotherapy.
doi:10.1200/JCO.2008.18.1370
PMCID: PMC2667820  PMID: 19204204

Results 1-10 (10)