PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (36)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  From Metagenomics to Pure Culture: Isolation and Characterization of the Moderately Halophilic Bacterium Spiribacter salinus gen. nov., sp. nov. 
Applied and Environmental Microbiology  2014;80(13):3850-3857.
Recent metagenomic studies on saltern ponds with intermediate salinities have determined that their microbial communities are dominated by both Euryarchaeota and halophilic bacteria, with a gammaproteobacterium closely related to the genera Alkalilimnicola and Arhodomonas being one of the most predominant microorganisms, making up to 15% of the total prokaryotic population. Here we used several strategies and culture media in order to isolate this organism in pure culture. We report the isolation and taxonomic characterization of this new, never before cultured microorganism, designated M19-40T, isolated from a saltern located in Isla Cristina, Spain, using a medium with a mixture of 15% salts, yeast extract, and pyruvic acid as the carbon source. Morphologically small curved cells (young cultures) with a tendency to form long spiral cells in older cultures were observed in pure cultures. The organism is a Gram-negative, nonmotile bacterium that is strictly aerobic, non-endospore forming, heterotrophic, and moderately halophilic, and it is able to grow at 10 to 25% (wt/vol) NaCl, with optimal growth occurring at 15% (wt/vol) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that strain M19-40T has a low similarity with other previously described bacteria and shows the closest phylogenetic similarity with species of the genera Alkalilimnicola (94.9 to 94.5%), Alkalispirillum (94.3%), and Arhodomonas (93.9%) within the family Ectothiorhodospiraceae. The phenotypic, genotypic, and chemotaxonomic features of this new bacterium showed that it constitutes a new genus and species, for which the name Spiribacter salinus gen. nov., sp. nov., is proposed, with strain M19-40T (= CECT 8282T = IBRC-M 10768T = LMG 27464T) being the type strain.
doi:10.1128/AEM.00430-14
PMCID: PMC4054224  PMID: 24747894
2.  Long-Memory and the Sea Level-Temperature Relationship: A Fractional Cointegration Approach 
PLoS ONE  2014;9(11):e113439.
Through thermal expansion of oceans and melting of land-based ice, global warming is very likely contributing to the sea level rise observed during the 20th century. The amount by which further increases in global average temperature could affect sea level is only known with large uncertainties due to the limited capacity of physics-based models to predict sea levels from global surface temperatures. Semi-empirical approaches have been implemented to estimate the statistical relationship between these two variables providing an alternative measure on which to base potentially disrupting impacts on coastal communities and ecosystems. However, only a few of these semi-empirical applications had addressed the spurious inference that is likely to be drawn when one nonstationary process is regressed on another. Furthermore, it has been shown that spurious effects are not eliminated by stationary processes when these possess strong long memory. Our results indicate that both global temperature and sea level indeed present the characteristics of long memory processes. Nevertheless, we find that these variables are fractionally cointegrated when sea-ice extent is incorporated as an instrumental variable for temperature which in our estimations has a statistically significant positive impact on global sea level.
doi:10.1371/journal.pone.0113439
PMCID: PMC4245127  PMID: 25426638
3.  Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach 
We analyzed the prokaryotic community structure of a saltern pond with 21% total salts located in Isla Cristina, Huelva, Southwest Spain, close to the Atlantic ocean coast. For this purpose, we constructed a metagenome (designated as IC21) obtained by pyrosequencing consisting of 486 Mb with an average read length of 397 bp and compared it with other metagenomic datasets obtained from ponds with 19, 33, and 37% total salts acquired from Santa Pola marine saltern, located in Alicante, East Spain, on the Mediterranean coast. Although the salinity in IC21 is closer to the pond with 19% total salts from Santa Pola saltern (designated as SS19), IC21 is more similar at higher taxonomic levels to the pond with 33% total salts from Santa Pola saltern (designated as SS33), since both are predominated by the phylum Euryarchaeota. However, there are significant differences at lower taxonomic levels where most sequences were related to the genus Halorubrum in IC21 and to Haloquadratum in SS33. Within the Bacteroidetes, the genus Psychroflexus is the most abundant in IC21 while Salinibacter dominates in SS33. Sequences related to bacteriorhodopsins and halorhodopsins correlate with the abundance of Haloquadratum in Santa Pola SS19 to SS33 and of Halorubrum in Isla Cristina IC21 dataset, respectively. Differences in composition might be attributed to local ecological conditions since IC21 showed a decrease in the number of sequences related to the synthesis of compatible solutes and in the utilization of phosphonate.
doi:10.3389/fmicb.2014.00196
PMCID: PMC4021199  PMID: 24847316
metagenomics; haloarchaea; halophilic bacteria; saltern; prokaryotic diversity
4.  Population and genomic analysis of the genus Halorubrum 
The Halobacteria are known to engage in frequent gene transfer and homologous recombination. For stably diverged lineages to persist some checks on the rate of between lineage recombination must exist. We surveyed a group of isolates from the Aran-Bidgol endorheic lake in Iran and sequenced a selection of them. Multilocus Sequence Analysis (MLSA) and Average Nucleotide Identity (ANI) revealed multiple clusters (phylogroups) of organisms present in the lake. Patterns of intein and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) presence/absence and their sequence similarity, GC usage along with the ANI and the identities of the genes used in the MLSA revealed that two of these clusters share an exchange bias toward others in their phylogroup while showing reduced rates of exchange with other organisms in the environment. However, a third cluster, composed in part of named species from other areas of central Asia, displayed many indications of variability in exchange partners, from within the lake as well as outside the lake. We conclude that barriers to gene exchange exist between the two purely Aran-Bidgol phylogroups, and that the third cluster with members from other regions is not a single population and likely reflects an amalgamation of several populations.
doi:10.3389/fmicb.2014.00140
PMCID: PMC3990103  PMID: 24782836
Halobacteria; Multilocus Sequence Analysis (MLSA); Average Nucleotide Identity (ANI); intein; CRISPR
5.  Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations 
Halobacteria require high NaCl concentrations for growth and are the dominant inhabitants of hypersaline environments above 15% NaCl. They are well-documented to be highly recombinogenic, both in frequency and in the range of exchange partners. In this study, we examine the genetic and genomic variation of cultured, naturally co-occurring environmental populations of Halobacteria. Sequence data from multiple loci (~2500 bp) identified many closely and more distantly related strains belonging to the genera Halorubrum and Haloarcula. Genome fingerprinting using a random priming PCR amplification method to analyze these isolates revealed diverse banding patterns across each of the genera and surprisingly even for isolates that are identical at the nucleotide level for five protein coding sequenced loci. This variance in genome structure even between identical multilocus sequence analysis (MLSA) haplotypes indicates that accumulation of genomic variation is rapid: faster than the rate of third codon substitutions.
doi:10.3389/fmicb.2014.00143
PMCID: PMC3988388  PMID: 24782838
Halobacteria; MLSA; genome fingerprinting; Aran-Bidgol lake; environmental population
6.  The effect of colostrum intake on blood plasma proteome profile in newborn lambs: low abundance proteins 
Background
Colostrum intake by newborn lambs plays a fundamental role in the perinatal period, ensuring lamb survival. In this study, blood plasma samples from two groups of newborn lambs (Colostrum group and Delayed Colostrum group) at 2 and 14 h after birth were treated to reduce the content of high abundance proteins and analyzed using Two-Dimensional Differential in Gel Electrophoresis and MALDI MS/MS for protein identification in order to investigate low abundance proteins with immune function in newborn lambs.
Results
The results showed that four proteins were increased in the blood plasma of lambs due to colostrum intake. These proteins have not been previously described as increased in blood plasma of newborn ruminants by colostrum intake. Moreover, these proteins have been described as having an immune function in other species, some of which were previously identified in colostrum and milk.
Conclusions
In conclusion, colostrum intake modified the low abundance proteome profile of blood plasma from newborn lambs, increasing the concentration of apolipoprotein A-IV, plasminogen, serum amyloid A and fibrinogen, demonstrating that colostrum is essential, not only for the provision of immunoglobulins, but also because of increases in several low abundance proteins with immune function.
doi:10.1186/1746-6148-10-85
PMCID: PMC4108057  PMID: 24708841
7.  Metagenomic Sequence of Prokaryotic Microbiota from an Intermediate-Salinity Pond of a Saltern in Isla Cristina, Spain 
Genome Announcements  2014;2(1):e00045-14.
Marine salterns are artificial multipond systems designed for the commercial production of salt by evaporation of seawater. We report here the metagenomic sequence of the prokaryotic microbiota of a pond with intermediate salinity (21% total salts) of a saltern located in Isla Cristina, Huelva, southwest Spain.
doi:10.1128/genomeA.00045-14
PMCID: PMC3924367  PMID: 24526635
8.  Hydrophobic Gentamicin-Loaded Nanoparticles Are Effective against Brucella melitensis Infection in Mice 
The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis.
doi:10.1128/AAC.00378-13
PMCID: PMC3697350  PMID: 23650167
9.  Metagenome Sequencing of Prokaryotic Microbiota from Two Hypersaline Ponds of a Marine Saltern in Santa Pola, Spain 
Genome Announcements  2013;1(6):e00933-13.
Marine salterns are composed of several shallow ponds with a salinity gradient, from seawater to salt saturation, with gradually changing microbial populations. Here, we report the metagenome sequencing of the prokaryotic microbiota of two ponds with 13% and 33% salinity from a saltern in Santa Pola, Spain.
doi:10.1128/genomeA.00933-13
PMCID: PMC3828313  PMID: 24233589
10.  Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium 
BMC Genomics  2013;14:787.
Background
Thalassosaline waters produced by the concentration of seawater are widespread and common extreme aquatic habitats. Their salinity varies from that of sea water (ca. 3.5%) to saturation for NaCl (ca. 37%). Obviously the microbiota varies dramatically throughout this range. Recent metagenomic analysis of intermediate salinity waters (19%) indicated the presence of an abundant and yet undescribed gamma-proteobacterium. Two strains belonging to this group have been isolated from saltern ponds of intermediate salinity in two Spanish salterns and were named “Spiribacter”.
Results
The genomes of two isolates of “Spiribacter” have been fully sequenced and assembled. The analysis of metagenomic datasets indicates that microbes of this genus are widespread worldwide in medium salinity habitats representing the first ecologically defined moderate halophile. The genomes indicate that the two isolates belong to different species within the same genus. Both genomes are streamlined with high coding densities, have few regulatory mechanisms and no motility or chemotactic behavior. Metabolically they are heterotrophs with a subgroup II xanthorhodopsin as an additional energy source when light is available.
Conclusions
This is the first bacterium that has been proven by culture independent approaches to be prevalent in hypersaline habitats of intermediate salinity (half a way between the sea and NaCl saturation). Predictions from the proteome and analysis of transporter genes, together with a complete ectoine biosynthesis gene cluster are consistent with these microbes having the salt-out-organic-compatible solutes type of osmoregulation. All these features are also consistent with a well-adapted fully planktonic microbe while other halophiles with more complex genomes such as Salinibacter ruber might have particle associated microniches.
doi:10.1186/1471-2164-14-787
PMCID: PMC3832224  PMID: 24225341
Halophilic bacteria; Xanthorhodopsin; Hypersaline; Saltern; Spiribacter; Moderate halophile
12.  Correction: Flavobacterium plurextorum sp. nov. Isolated from Farmed Rainbow Trout (Oncorhynchus mykiss) 
PLoS ONE  2013;8(7):10.1371/annotation/6ab9387b-ebd3-4692-99e8-96661687b6bb.
doi:10.1371/annotation/6ab9387b-ebd3-4692-99e8-96661687b6bb
PMCID: PMC3729972
13.  Draft Genome Sequence of the Moderately Halophilic Bacterium Marinobacter lipolyticus Strain SM19 
Genome Announcements  2013;1(4):e00379-13.
Marinobacter lipolyticus strain SM19, isolated from saline soil in Spain, is a moderately halophilic bacterium belonging to the class Gammaproteobacteria. Here, we report the draft genome sequence of this strain, which consists of a 4.0-Mb chromosome and which is able to produce the halophilic enzyme lipase LipBL.
doi:10.1128/genomeA.00379-13
PMCID: PMC3695434  PMID: 23814106
14.  Flavobacterium plurextorum sp. nov. Isolated from Farmed Rainbow Trout (Oncorhynchus mykiss) 
PLoS ONE  2013;8(6):e67741.
Five strains (1126-1H-08T, 51B-09, 986-08, 1084B-08 and 424-08) were isolated from diseased rainbow trout. Cells were Gram-negative rods, 0.7 µm wide and 3 µm long, non-endospore-forming, catalase and oxidase positive. Colonies were circular, yellow-pigmented, smooth and entire on TGE agar after 72 hours incubation at 25°C. They grew in a temperature range between 15°C to 30°C, but they did not grow at 37°Cor 42°C. Based on 16S rRNA gene sequence analysis, the isolates belonged to the genus Flavobacterium. Strain 1126-1H-08T exhibited the highest levels of similarity with Flavobacterium oncorhynchi CECT 7678T and Flavobacterium pectinovorum DSM 6368T (98.5% and 97.9% sequence similarity, respectively). DNA–DNA hybridization values were 87 to 99% among the five isolates and ranged from 21 to 48% between strain 1126-1H-08T, selected as a representative isolate, and the type strains of Flavobacterium oncorhynchi CECT 7678T and other phylogenetic related Flavobacterium species. The DNA G+C content of strain 1126-1H-08T was 33.2 mol%. The predominant respiratory quinone was MK-6 and the major fatty acids were iso-C15∶0 and C15∶0. These data were similar to those reported for Flavobacterium species. Several physiological and biochemical tests differentiated the novel bacterial strains from related Flavobacterium species. Phylogenetic, genetic and phenotypic data indicate that these strains represent a new species of the genus Flavobacterium, for which the name Flavobacterium plurextorum sp. nov. was proposed. The type strain is 1126-1H-08T ( = CECT 7844T = CCUG 60112T).
doi:10.1371/journal.pone.0067741
PMCID: PMC3692447  PMID: 23825681
15.  Draft Genome Sequence of the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Strain CP76 
Genome Announcements  2013;1(3):e00268-13.
Pseudoalteromonas ruthenica strain CP76, isolated from a saltern in Spain, is a moderately halophilic bacterium belonging to the Gammaproteobacteria. Here we report the draft genome sequence, which consists of a 4.0-Mb chromosome, of this strain, which is able to produce the extracellular enzyme haloprotease CPI.
doi:10.1128/genomeA.00268-13
PMCID: PMC3662824  PMID: 23704184
16.  Draft Genome of the Marine Gammaproteobacterium Halomonas titanicae 
Genome Announcements  2013;1(2):e00083-13.
Halomonas titanicae strain BH1 is a heterotrophic, aerobic marine bacterium which was isolated from rusticles of the RMS Titanic wreck. Here we report the draft genome sequence of this halophilic gammaproteobacterium.
doi:10.1128/genomeA.00083-13
PMCID: PMC3622986  PMID: 23516210
17.  Draft Genome of Spiribacter salinus M19-40, an Abundant Gammaproteobacterium in Aquatic Hypersaline Environments 
Genome Announcements  2013;1(1):e00179-12.
We have previously used a de novo metagenomic assembly approach to describe the presence of an abundant gammaproteobacterium comprising nearly 15% of the microbial community in an intermediate salinity solar saltern pond. We have obtained this microbe in pure culture and describe the genome sequencing of the halophilic photoheterotrophic microbe, Spiribacter salinus M19-40.
doi:10.1128/genomeA.00179-12
PMCID: PMC3569344  PMID: 23409269
18.  Prokaryotic Diversity in Aran-Bidgol Salt Lake, the Largest Hypersaline Playa in Iran 
Microbes and Environments  2011;27(1):87-93.
Prokaryotic diversity in Aran-Bidgol salt lake, a thalasohaline lake in Iran, was studied by fluorescence in situ hybridization (FISH), cultivation techniques, denaturing gradient gel electrophoresis (DGGE) of PCR-amplified fragments of 16S rRNA genes and 16S rRNA gene clone library analysis. Viable counts obtained (2.5–4 × 106 cells mL−1) were similar to total cell abundance in the lake determined by DAPI direct count (3–4×107 cells mL−1). The proportion of Bacteria to Archaea in the community detectable by FISH was unexpectedly high and ranged between 1:3 and 1:2. We analyzed 101 archaeal isolates and found that most belonged to the genera Halorubrum (55%) and Haloarcula (18%). Eleven bacterial isolates obtained in pure culture were affiliated with the genera Salinibacter (18.7%), Salicola (18.7%) and Rhodovibrio (35.3%). Analysis of inserts of 100 clones from the eight 16S rRNA clone libraries constructed revealed 37 OTUs. The majority (63%) of these sequences were not related to any previously identified taxa. Within this sampling effort we most frequently retrieved phylotypes related to Halorhabdus (16% of archaeal sequences obtained) and Salinibacter (36% of bacterial sequences obtained). Other prokaryotic groups that were abundant included representatives of Haloquadratum, the anaerobic genera Halanaerobium and Halocella, purple sulfur bacteria of the genus Halorhodospira and Cyanobacteria.
doi:10.1264/jsme2.ME11267
PMCID: PMC4036037  PMID: 22185719
Archaea; Bacteria; halophilic microorganisms; prokaryotic diversity; hypersaline lake
19.  New Abundant Microbial Groups in Aquatic Hypersaline Environments 
Scientific Reports  2011;1:135.
We describe the microbiota of two hypersaline saltern ponds, one of intermediate salinity (19%) and a NaCl saturated crystallizer pond (37%) using pyrosequencing. The analyses of these metagenomes (nearly 784 Mb) reaffirmed the vast dominance of Haloquadratum walsbyi but also revealed novel, abundant and previously unsuspected microbial groups. We describe for the first time, a group of low GC Actinobacteria, related to freshwater Actinobacteria, abundant in low and intermediate salinities. Metagenomic assembly revealed three new abundant microbes: a low-GC euryarchaeon with the lowest GC content described for any euryarchaeon, a high-GC euryarchaeon and a gammaproteobacterium related to Alkalilimnicola and Nitrococcus. Multiple displacement amplification and sequencing of the genome from a single archaeal cell of the new low GC euryarchaeon suggest a photoheterotrophic and polysaccharide-degrading lifestyle and its relatedness to the recently described lineage of Nanohaloarchaea. These discoveries reveal the combined power of an unbiased metagenomic and single cell genomic approach.
doi:10.1038/srep00135
PMCID: PMC3216616  PMID: 22355652
20.  Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece 
Three halophilic isolates, strains Halo-G*T, AUS-1 and Naxos II, were compared. Halo-G* was isolated from an evaporitic salt crystal from Baja California, Mexico, whereas AUS-1 and Naxos II were isolated from salt pools in Western Australia and the Greek island of Naxos, respectively. Halo-G*T had been exposed previously to conditions of outer space and survived 2 weeks on the Biopan facility. Chemotaxonomic and molecular comparisons suggested high similarity between the three strains. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains clustered with Halorubrum species, showing sequence similarities of 99.2–97.1 %. The DNA–DNA hybridization values of strain Halo-G*T and strains AUS-1 and Naxos II are 73 and 75 %, respectively, indicating that they constitute a single species. The DNA relatedness between strain Halo-G*T and the type strains of 13 closely related species of the genus Halorubrum ranged from 39 to 2 %, suggesting that the three isolates constitute a different genospecies. The G+C content of the DNA of the three strains was 65.5–66.5 mol%. All three strains contained C20C20 derivatives of diethers of phosphatidylglycerol, phosphatidylglyceromethylphosphate and phosphatidylglycerolsulfate, together with a sulfated glycolipid. On the basis of these results, a novel species that includes the three strains is proposed, with the name Halorubrum chaoviator sp. nov. The type strain is strain Halo-G*T (=DSM 19316T =NCIMB 14426T =ATCC BAA-1602T).
doi:10.1099/ijs.0.000463-0
PMCID: PMC3182535  PMID: 19567575
21.  A Novel Halophilic Lipase, LipBL, Showing High Efficiency in the Production of Eicosapentaenoic Acid (EPA) 
PLoS ONE  2011;6(8):e23325.
Background
Among extremophiles, halophiles are defined as microorganisms adapted to live and thrive in diverse extreme saline environments. These extremophilic microorganisms constitute the source of a number of hydrolases with great biotechnological applications. The interest to use extremozymes from halophiles in industrial applications is their resistance to organic solvents and extreme temperatures. Marinobacter lipolyticus SM19 is a moderately halophilic bacterium, isolated previously from a saline habitat in South Spain, showing lipolytic activity.
Methods and Findings
A lipolytic enzyme from the halophilic bacterium Marinobacter lipolyticus SM19 was isolated. This enzyme, designated LipBL, was expressed in Escherichia coli. LipBL is a protein of 404 amino acids with a molecular mass of 45.3 kDa and high identity to class C β-lactamases. LipBL was purified and biochemically characterized. The temperature for its maximal activity was 80°C and the pH optimum determined at 25°C was 7.0, showing optimal activity without sodium chloride, while maintaining 20% activity in a wide range of NaCl concentrations. This enzyme exhibited high activity against short-medium length acyl chain substrates, although it also hydrolyzes olive oil and fish oil. The fish oil hydrolysis using LipBL results in an enrichment of free eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), relative to its levels present in fish oil. For improving the stability and to be used in industrial processes LipBL was immobilized in different supports. The immobilized derivatives CNBr-activated Sepharose were highly selective towards the release of EPA versus DHA. The enzyme is also active towards different chiral and prochiral esters. Exposure of LipBL to buffer-solvent mixtures showed that the enzyme had remarkable activity and stability in all organic solvents tested.
Conclusions
In this study we isolated, purified, biochemically characterized and immobilized a lipolytic enzyme from a halophilic bacterium M. lipolyticus, which constitutes an enzyme with excellent properties to be used in the food industry, in the enrichment in omega-3 PUFAs.
doi:10.1371/journal.pone.0023325
PMCID: PMC3154438  PMID: 21853111
22.  Halophiles 2010: Life in Saline Environments ▿  
Applied and Environmental Microbiology  2010;76(21):6971-6981.
doi:10.1128/AEM.01868-10
PMCID: PMC2976238  PMID: 20817804
23.  Microbial Biogeography of Six Salt Lakes in Inner Mongolia, China, and a Salt Lake in Argentina ▿ †  
Applied and Environmental Microbiology  2009;75(18):5750-5760.
We used cultivation-independent methods to investigate the prokaryotic biogeography of the water column in six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. These lakes had different salt compositions and pH values and were at variable geographic distances, on both local and intercontinental scales, which allowed us to explore the microbial community composition within the context of both contemporary environmental conditions and geographic distance. Fourteen 16S rRNA gene clone libraries were constructed, and over 200 16S rRNA gene sequences were obtained. These sequences were used to construct biotic similarity matrices, which were used in combination with environmental similarity matrices and a distance matrix in the Mantel test to discover which factors significantly influenced biotic similarity. We showed that archaeal biogeography was influenced by contemporary environmental factors alone (Na+, CO32−, and HCO3− ion concentrations; pH; and temperature). Bacterial biogeography was influenced both by contemporary environmental factors (Na+, Mg2+, and HCO3− ion concentrations and pH) and by geographic distance.
doi:10.1128/AEM.00040-09
PMCID: PMC2747855  PMID: 19648369
24.  The Haloprotease CPI Produced by the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Is Secreted by the Type II Secretion Pathway▿ †  
Applied and Environmental Microbiology  2009;75(12):4197-4201.
The gene (cpo) encoding the extracellular protease CPI produced by the moderately halophilic bacterium Pseudoalteromonas ruthenica CP76 was cloned, and its nucleotide sequence was analyzed. The cpo gene encodes a 733-residue protein showing sequence similarity to metalloproteases of the M4 family. The type II secretion apparatus was shown to be responsible for secretion of the haloprotease CPI.
doi:10.1128/AEM.00156-09
PMCID: PMC2698379  PMID: 19376897
25.  Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China 
BMC Genomics  2007;8:410.
Background
We are profoundly ignorant about the diversity of viruses that infect the domain Archaea. Less than 100 have been identified and described and very few of these have had their genomic sequences determined. Here we report the genomic sequence of a previously undescribed archaeal virus.
Results
Haloarchaeal strains with 16S rRNA gene sequences 98% identical to Halorubrum saccharovorum were isolated from a hypersaline lake in Inner Mongolia. Two lytic viruses infecting these were isolated from the lake water. The BJ1 virus is described in this paper. It has an icosahedral head and tail morphology and most likely a linear double stranded DNA genome exhibiting terminal redundancy. Its genome sequence has 42,271 base pairs with a GC content of ~65 mol%. The genome of BJ1 is predicted to encode 70 ORFs, including one for a tRNA. Fifty of the seventy ORFs had no identity to data base entries; twenty showed sequence identity matches to archaeal viruses and to haloarchaea. ORFs possibly coding for an origin of replication complex, integrase, helicase and structural capsid proteins were identified. Evidence for viral integration was obtained.
Conclusion
The virus described here has a very low sequence identity to any previously described virus. Fifty of the seventy ORFs could not be annotated in any way based on amino acid identities with sequences already present in the databases. Determining functions for ORFs such as these is probably easier using a simple virus as a model system.
doi:10.1186/1471-2164-8-410
PMCID: PMC2194725  PMID: 17996081

Results 1-25 (36)