Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  MRSA: A Density-Equalizing Mapping Analysis of the Global Research Architecture 
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved as an alarming public health thread due to its global spread as hospital and community pathogen. Despite this role, a scientometric analysis has not been performed yet. Therefore, the NewQIS platform was used to conduct a combined density-equalizing mapping and scientometric study. As database, the Web of Science was used, and all entries between 1961 and 2007 were analyzed. In total, 7671 entries were identified. Density equalizing mapping demonstrated a distortion of the world map for the benefit of the USA as leading country with a total output of 2374 publications, followed by the UK (1030) and Japan (862). Citation rate analysis revealed Portugal as leading country with a rate of 35.47 citations per article, followed by New Zealand and Denmark. Country cooperation network analyses showed 743 collaborations with US-UK being most frequent. Network citation analyses indicated the publications that arose from the cooperation of USA and France as well as USA and Japan as the most cited (75.36 and 74.55 citations per collaboration article, respectively). The present study provides the first combined density-equalizing mapping and scientometric analysis of MRSA research. It illustrates the global MRSA research architecture. It can be assumed that this highly relevant topic for public health will achieve even greater dimensions in the future.
PMCID: PMC4210976  PMID: 25272080
methicillin-resistant Staphylococcus aureus; MRSA; antibiotic resistance; density-equalizing mapping; scientometrics; public health
2.  Influenza: a scientometric and density-equalizing analysis 
BMC Infectious Diseases  2013;13:454.
Novel influenza in 2009 caused by H1N1, as well as the seasonal influenza, still are a challenge for the public health sectors worldwide. An increasing number of publications referring to this infectious disease make it difficult to distinguish relevant research output. The current study used scientometric indices for a detailed investigation on influenza related research activity and the method of density equalizing mapping to make the differences of the overall research worldwide obvious. The aim of the study was to compare scientific effort over the time as well as geographical distribution including the cooperation on national and international level.
Therefore, publication data was retrieved from Web of Science (WoS) of Thomson Scientific. Subsequently the data was analysed in order to show geographical distributions and the development of the research output over the time.
The query retrieved 51,418 publications that are listed in WoS for the time interval from 1900 to 2009. There is a continuous increase in research output and general citation activity especially since 1990.
The identified all in all 51,418 publications were published by researchers from 151 different countries. Scientists from the USA participate in more than 37 percent of all publications, followed by researchers from the UK and Germany with more than five percent. In addition, the USA is in the focus of international cooperation.
In terms of number of publications on influenza, the Journal of Virology ranks first, followed by Vaccine and Virology. The highest impact factor (IF 2009) in this selection can be established for The Lancet (30.75). Robert Webster seems to be the most prolific author contributing the most publications in the field of influenza.
This study reveals an increasing and wide research interest in influenza. Nevertheless, citation based-declaration of scientific quality should be considered critically due to distortion by self-citation and co-authorship.
PMCID: PMC3851602  PMID: 24079616
3.  Mobile air quality studies (MAQS) in inner cities: particulate matter PM10 levels related to different vehicle driving modes and integration of data into a geographical information program 
Particulate matter (PM) is assumed to exert a major burden on public health. Most studies that address levels of PM use stationary measure systems. By contrast, only few studies measure PM concentrations under mobile conditions to analyze individual exposure situations.
By combining spatial-temporal analysis with a novel vehicle-mounted sensor system, the present Mobile Air Quality Study (MAQS) aimed to analyse effects of different driving conditions in a convertible vehicle. PM10 was continuously monitored in a convertible car, driven with roof open, roof closed, but windows open, or windows closed.
PM10 values inside the car were nearly always higher with open roof than with roof and windows closed, whereas no difference was seen with open or closed windows. During the day PM10 values varied with high values before noon, and occasional high median values or standard deviation values due to individual factors. Vehicle speed in itself did not influence the mean value of PM10; however, at traffic speed (10 – 50 km/h) the standard deviation was large. No systematic difference was seen between PM10 values in stationary and mobile cars, nor was any PM10 difference observed between driving within or outside an environmental (low emission) zone.
The present study has shown the feasibility of mobile PM analysis in vehicles. Individual exposure of the occupants varies depending on factors like time of day as well as ventilation of the car; other specific factors are clearly identifiably and may relate to specific PM10 sources. This system may be used to monitor individual exposure ranges and provide recommendations for preventive measurements. Although differences in PM10 levels were found under certain ventilation conditions, these differences are likely not of concern for the safety and health of passengers.
PMCID: PMC3539871  PMID: 23031208
4.  Particulate matter (PM) 2.5 levels in ETS emissions of a Marlboro Red cigarette in comparison to the 3R4F reference cigarette under open- and closed-door condition 
Potential health damage by environmental emission of tobacco smoke (environmental tobacco smoke, ETS) has been demonstrated convincingly in numerous studies. People, especially children, are still exposed to ETS in the small space of private cars. Although major amounts of toxic compounds from ETS are likely transported into the distal lung via particulate matter (PM), few studies have quantified the amount of PM in ETS.
Study aim
The aim of this study was to determine the ETS-dependent concentration of PM from both a 3R4F reference cigarette (RC) as well as a Marlboro Red brand cigarette (MRC) in a small enclosed space under different conditions of ventilation to model car exposure.
In order to create ETS reproducibly, an emitter (ETSE) was constructed and mounted on to an outdoor telephone booth with an inner volume of 1.75 m3. Cigarettes were smoked under open- and closed-door condition to imitate different ventilation scenarios. PM2.5 concentration was quantified by a laser aerosol spectrometer (Grimm; Model 1.109), and data were adjusted for baseline values. Simultaneously indoor and outdoor climate parameters were recorded. The time of smoking was divided into the ETS generation phase (subset “emission”) and a declining phase of PM concentration (subset “elimination”); measurement was terminated after 10 min. For all three time periods the average concentration of PM2.5 (Cmean-PM2.5) and the area under the PM2.5 concentration curve (AUC-PM2.5) was calculated. The maximum concentration (Cmax-PM2.5) was taken from the total interval.
For both cigarette types open-door ventilation reduced the AUC-PM2.5 (RC: from 59 400 ± 14 600 to 5 550 ± 3 900 μg*sec/m3; MRC: from 86 500 ± 32 000 to 7 300 ± 2 400 μg*sec/m3; p < 0.001) and Cmean-PM2.5 (RC: from 600 ± 150 to 56 ± 40 μg/m3, MRC from 870 ± 320 to 75 ± 25 μg/m3; p < 0.001) by about 90%. Cmax-PM2.5 was reduced by about 80% (RC: from 1 050 ± 230 to 185 ± 125 μg/m3; MRC: from 1 560 ±500 μg/m3 to 250 ± 85 μg/m3; p < 0.001). In the subset “emission” we identified a 78% decrease in AUC-PM2.5 (RC: from 18 600 ± 4 600 to 4 000 ± 2 600 μg*sec/m3; MRC: from 26 600 ± 7 200 to 5 800 ± 1 700 μg*sec/m3; p < 0.001) and Cmean-PM2.5 (RC: from 430 ± 108 to 93 ± 60 μg/m3; MRC: from 620 ± 170 to 134 ± 40 μg/m3; p < 0.001). In the subset “elimination” we found a reduction of about 96–98% for AUC-PM2.5 (RC: from 40 800 ± 11 100 to 1 500 ± 1 700 μg*sec/m3; MRC: from 58 500 ± 25 200 to 1 400 ± 800 μg*sec/m3; p < 0.001) and Cmean-PM2.5 (RC: from 730 ± 200 to 27 ± 29 μg/m3; MRC: from 1 000 ± 450 to 26 ± 15 μg/m3; p < 0.001). Throughout the total interval Cmax-PM2.5 of MRC was about 50% higher (1 550 ± 500 μg/m3) compared to RC (1 050 ± 230 μg/m3; p < 0.05). For the subset “emission” - but not for the other periods - AUC-PM2.5 for MRC was 43% higher (MRC: 26 600 ± 7 200 μg*sec/m3; RC: 18 600 ± 4 600 μg*sec/m3; p < 0.05) and 44% higher for Cmean-PM2.5 (MRC: 620 ± 170 μg/m3; RC: 430 ± 108 μg/m3; p < 0.05).
This method allows reliable quantification of PM2.5-ETS exposure under various conditions, and may be useful for ETS risk assessment in realistic exposure situations. The findings demonstrate that open-door condition does not completely remove ETS from a defined indoor space of 1.75 m3. Because there is no safe level of ETS exposure ventilation is not adequate enough to prevent ETS exposure in confined spaces, e.g. private cars. Additionally, differences in the characteristics of cigarettes affect the amount of ETS particle emission and need to be clarified by ongoing investigations.
PMCID: PMC3494543  PMID: 22735100
5.  Nanoparticles and cars - analysis of potential sources 
Urban health is potentially affected by particle emissions. The potential toxicity of nanoparticles is heavily debated and there is an enormous global increase in research activity in this field. In this respect, it is commonly accepted that nanoparticles may also be generated in processes occurring while driving vehicles. So far, a variety of studies addressed traffic-related particulate matter emissions, but only few studies focused on potential nanoparticles.
Therefore, the present study analyzed the literature with regard to nanoparticles and cars. It can be stated that, to date, only a limited amount of research has been conducted in this area and more studies are needed to 1) address kind and sources of nanoparticles within automobiles and to 2) analyse whether there are health effects caused by these nanoparticles.
PMCID: PMC3408366  PMID: 22726351
6.  Bicycle helmet use and non-use – recently published research 
Bicycle traumata are very common and especially neurologic complications lead to disability and death in all stages of the life. This review assembles the most recent findings concerning research in the field of bicycle traumata combined with the factor of bicycle helmet use. The area of bicycle trauma research is by nature multidisciplinary and relevant not only for physicians but also for experts with educational, engineering, judicial, rehabilitative or public health functions. Due to this plurality of global publications and special subjects, short time reviews help to detect recent research directions and provide also information from neighbour disciplines for researchers. It can be stated that to date, that although a huge amount of research has been conducted in this area more studies are needed to evaluate and improve special conditions and needs in different regions, ages, nationalities and to create successful prevention programs of severe head and face injuries while cycling.
Focus was explicit the bicycle helmet use, wherefore sledding, ski and snowboard studies were excluded and only one study concerning electric bicycles remained due to similar motion structures within this review. The considered studies were all published between January 2010 and August 2011 and were identified via the online databases Medline PubMed and ISI Web of Science.
PMCID: PMC3403857  PMID: 22632628
Bicycle helmet; Protection; Prevention; Accident; Trauma
7.  Tobacco smoke particles and indoor air quality (ToPIQ) - the protocol of a new study 
Environmental tobacco smoke (ETS) is a major contributor to indoor air pollution. Since decades it is well documented that ETS can be harmful to human health and causes premature death and disease. In comparison to the huge research on toxicological substances of ETS, less attention was paid on the concentration of indoor ETS-dependent particulate matter (PM). Especially, investigation that focuses on different tobacco products and their concentration of deeply into the airways depositing PM-fractions (PM10, PM2.5 and PM1) must be stated. The tobacco smoke particles and indoor air quality study (ToPIQS) will approach this issue by device supported generation of indoor ETS and simultaneously measurements of PM concentration by laser aerosol spectrometry. Primarily, the ToPIQ study will conduct a field research with focus on PM concentration of different tobacco products and within various microenvironments. It is planned to extend the analysis to basic research on influencing factors of ETS-dependent PM concentration.
PMCID: PMC3260229  PMID: 22188808
8.  Car indoor air pollution - analysis of potential sources 
The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources.
Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future.
PMCID: PMC3261090  PMID: 22177291
9.  Ships, ports and particulate air pollution - an analysis of recent studies 
The duration of use is usually significantly longer for marine vessels than for roadside vehicles. Therefore, these vessels are often powered by relatively old engines which may propagate air pollution. Also, the quality of fuel used for marine vessels is usually not comparable to the quality of fuels used in the automotive sector and therefore, port areas may exhibit a high degree of air pollution. In contrast to the multitude of studies that addressed outdoor air pollution due to road traffic, only little is known about ship-related air pollution. Therefore the present article aims to summarize recent studies that address air pollution, i.e. particulate matter exposure, due to marine vessels. It can be stated that the data in this area of research is still largely limited. Especially, knowledge on the different air pollutions in different sea areas is needed.
PMCID: PMC3244961  PMID: 22141925
10.  Reduced inclination of cervical spine in a novel notebook screen system - implications for rehabilitation 
Professional working at computer notebooks is associated with high requirements on the body posture in the seated position. By the high continuous static muscle stress resulting from this position at notebooks, professionals frequently working at notebooks for long hours are exposed to an increased risk of musculoskeletal complaints. Especially in subjects with back pain, new notebooks should be evaluated with a focus on rehabilitative issues.
In a field study a new notebook design with adjustable screen was analyzed and compared to standard notebook position.
There are highly significant differences in the visual axis of individuals who are seated in the novel notebook position in comparison to the standard position. Also, differences are present between further alternative notebook positions. Testing of gender and glasses did not reveal influences.
This study demonstrates that notebooks with adjustable screen may be used to improve the posture. Future studies may focus on patients with musculoskeletal diseases.
PMCID: PMC3253038  PMID: 22118159
11.  Drowning - a scientometric analysis and data acquisition of a constant global problem employing density equalizing mapping and scientometric benchmarking procedures 
Drowning is a constant global problem which claims approximately half a million victims worldwide each year, whereas the number of near-drowning victims is considerably higher. Public health strategies to reduce the burden of death are still limited. While research activities in the subject drowning grow constantly, yet there is no scientometric evaluation of the existing literature at the present time.
The current study uses classical bibliometric tools and visualizing techniques such as density equalizing mapping to analyse and evaluate the scientific research in the field of drowning. The interpretation of the achieved results is also implemented in the context of the data collection of the WHO.
All studies related to drowning and listed in the ISI-Web of Science database since 1900 were identified using the search term "drowning". Implementing bibliometric methods, a constant increase in quantitative markers such as number of publications per state, publication language or collaborations as well as qualitative markers such as citations were observed for research in the field of drowning. The combination with density equalizing mapping exposed different global patterns for research productivity and the total number of drowning deaths and drowning rates respectively. Chart techniques were used to illustrate bi- and multilateral research cooperation.
The present study provides the first scientometric approach that visualizes research activity on the subject of drowning. It can be assumed that the scientific approach to this topic will achieve even greater dimensions because of its continuing actuality.
PMCID: PMC3229455  PMID: 21999813
drowning; near-drowning; occupational medicine; scientometrics; density equalizing mapping
12.  Mobile Air Quality Studies (MAQS)-an international project 
Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"-exposure in relation to non-"traffic zone"-exposure.
Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including NO2, SO2, nanoparticles and ozone.
PMCID: PMC2865482  PMID: 20380704
13.  Work-related musculoskeletal disorders in the automotive industry due to repetitive work - implications for rehabilitation 
Musculoskeletal disorders (MSDs) due to repetitive work are common in manufacturing industries, such as the automotive industry. However, it's still unclear which MSDs of the upper limb are to be expected in the automotive industry in a first aid unit as well as in occupational precaution examinations. It is also unclear which examination method could be performed effectively for practical reasons and under rehabilitation aspects. Additionally, it was to discuss whether the conception of unspecific description for MSDs has advantages or disadvantages in contrast to a precise medical diagnosis.
We investigated the health status of two study populations working at two automotive plants in Germany. The first part included 67 consecutive patients who were seen for acute or chronic MSDs at the forearm over a 4-month period at the plants' medical services. Information about patients' working conditions and musculoskeletal symptoms was obtained during a standardized interview, which was followed by a standardized orthopedic-chiropractic physical examination. In the second part, 209 workers with daily exposure to video display terminals (VDT) completed a standardized questionnaire and were examined with function-oriented muscular tests on the occasion of their routine occupational precaution medical check-up.
The majority of the 67 patients seen by the company's medical services were blue-collar works from the assembly lines and trainees rather than white-collar workers from offices. Rates of musculoskeletal complaints were disproportionately higher among experienced people performing new tasks and younger trainees. The most common MSD in this group were disorders of flexor tendons of the forearm. By contrast, among the 209 employees working at VDT disorders of the neck and shoulders were more common than discomfort in the forearm. A positive tendency between restricted rotation of the cervical vertebrae and years worked at VDT was observed. In addition, only less than 8% of unspecific disorders of the upper limb (esp. wrist and forearm) were found.
Functional tests for the upper limb seemed to be very helpful to give precise medical advice to the employees to prevent individual complaints. The results are also helpful for developing specific training programs before beginning new tasks as well as for rehabilitation reasons. There's no need to use uncertain terminology (such as RSI) as it may not be representative of the actual underlying disorders as diagnosed by more thorough physical examinations.
PMCID: PMC2907870  PMID: 20374621
14.  Air pollution research: visualization of research activity using density-equalizing mapping and scientometric benchmarking procedures 
Due to constantly rising air pollution levels as well as an increasing awareness of the hazardousness of air pollutants, new laws and rules have recently been passed. Although there has been a large amount of research on this topic, bibliometric data is still to be collected. Thus this study provides a scientometric approach to the material published on this subject so far.
For this purpose, data retrieved from the "Web of Science" provided by the Thomson Scientific Institute was analyzed and visualized both with density-equalizing methods and classic data-processing methods such as tables and charts.
For the time span between 1955 and 2006, 26,253 items were listed and related to the topic of air pollution, published by 124 countries in 24 different languages. General citation activity has been constantly increasing since the beginning of the examined period. However, beginning with the year 1991, citation levels have been rising exponentially each year, reaching 39,220 citations in the year 2006. The United States, the UK and Germany were the three most productive countries in the area, with English and German ranked first and second in publishing languages, followed by French. An article published by Dockery, Pope, Xu et al. was both the most cited in total numbers and in average citation rate. J. Schwartz was able to claim the highest total number of citations on his publications, while D.W. Dockery has the highest citation rate per publication. As to the subject areas the items are assigned with, the most item were published in Environmental Sciences, followed by Meteorology & Atmospheric Sciences and Public, Environmental & Occupational Health. Nine out of the ten publishing journals with more than 300 entries dealt with environmental interests and one dealt with epidemiology.
Using the method of density-equalizing mapping and further common data processing procedures, it can be concluded that scientific work concerning air pollution and related topics enjoys unbrokenly growing scientific interest. This can be observed both in publication numbers and in citation activity.
PMCID: PMC2865481  PMID: 20359334

Results 1-14 (14)