PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB 
Prostate cancer is the most frequently diagnosed cancer and the second leading cause of death in males in the United States. Using human prostate cancer specimens, the authors have previously shown that elevated expression levels of 12-lipoxygenase (12-LOX) occurred more frequently in advanced stage, high-grade prostate cancer, suggesting that 12-LOX expression is associated with carcinoma progression and invasion. Previous reports from their group and others have shown that 12-LOX is a positive modulator of invasion and metastasis; however, the mechanism remains unclear. In this work, a new link between 12-LOX and the matrix metalloproteinase 9 (MMP9) in prostate cancer angiogenesis is reported. This study demonstrated that overexpression of 12-LOX in prostate cancer PC-3 cells resulted in elevated expression of MMP9 mRNA, protein and secretion. Exogenous addition of 12(S)-hydroxy eicosatetraenoic acid, the sole and stable end product of arachidonic acid metabolism by 12-LOX, is able to increase MMP9 expression in wild-type PC-3 cells. Furthermore, using pharmacological and genetic inhibition approaches, it was found that 12-LOX activates phosphoinositol 3 kinase (PI3K)/Akt, which results in nuclear factor-kappa B (NF-κB)-driven MMP9 expression, ensuing in enhanced chemoattraction of endothelial cells. Specific inhibitors of 12-LOX, PI3K or NF-κB inhibited MMP9 expression in 12-LOX-expressing PC-3 cells and resulted in the blockade of the migratory ability of endothelial cells. In summary, the authors have identified a new pathway by which overexpression of 12-LOX in prostate cancer cells leads to augmented production of MMP9 via activation of PI3K/Akt/NF-κB signaling. The role of 12-LOX-mediated MMP9 secretion in endothelial cell migration may account for the proangiogenic function of 12-LOX in prostate cancer.
doi:10.1002/ijc.28165
PMCID: PMC4269488  PMID: 23526143
12-lipoxygenase; matrix metalloproteinase; MMP9; NF-κB; prostate cancer; angiogenesis
2.  Platelets and cancer: a casual or causal relationship: revisited 
Cancer metastasis reviews  2014;33(1):231-269.
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as “First Responders” during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.
doi:10.1007/s10555-014-9498-0
PMCID: PMC4186918  PMID: 24696047
Platelet; TCIPA; Metastasis; Thrombosis; Extravasation; CTC
3.  Emerging targets in lipid-based therapy☆ 
Biochemical pharmacology  2012;85(5):673-688.
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to “biomarkers” does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
doi:10.1016/j.bcp.2012.11.028
PMCID: PMC4106802  PMID: 23261527
Cancer; Bioactive lipids; Raman; Therapeutics; Biomarkers; Drug synergism
4.  12-LIPOXYGENASE AND THE REGULATION OF HYPOXIA-INDUCIBLE FACTOR IN PROSTATE CANCER CELLS 
Experimental cell research  2010;316(10):1706-1715.
12-lipoxygenase, an arachidonic acid metabolizing enzyme of the lipoxygenase pathway, has been implicated as a major factor in promoting prostate cancer progression and metastasis. The ability of 12-LOX to aggravate the disease was linked to its proangiogenic role. Recent studies clearly demonstrated that 12-LOX enhances the expression and secretion of the angiogenic factor, vascular endothelial growth factor (VEGF) thus providing a direct link between this enzyme and its angiogenic properties. In the present study we have investigated the relationship between 12-LOX and hypoxia inducible factor-1α (HIF-1α), a transcription factor involved in the regulation of VEGF expression under hypoxic conditions in solid tumors. Our findings have revealed that HIF-1 is one of the target transcription factors regulated by 12-LOX and 12(S)-HETE, in hypoxic tumor cells of the prostate. Regulation of HIF-1α by 12-LOX adds to the complexity of pathways mediated by this enzyme in promoting prostate cancer angiogenesis and metastasis. We have evidence that 12-LOX increases the protein level, mRNA, and functional activity of HIF-1α under hypoxic conditions, one of the mechanisms by which it upregulates VEGF secretion and activity.
doi:10.1016/j.yexcr.2010.03.005
PMCID: PMC3420817  PMID: 20303950
12-Lipoxygenase; Hypoxia Inducible Factor-1α (HIF-1α); angiogenesis; prostate cancer; hypoxia
5.  Laccase Expression in Murine Pulmonary Cryptococcus neoformans Infection  
Infection and Immunity  2005;73(5):3124-3127.
Cryptococcus neoformans laccase expression during murine infection was investigated in lung tissue by immunohistochemistry and immunogold electron microscopy. Laccase was detected in the fungal cell cytoplasm, cell wall, and capsule in vivo. The amount of laccase found in different sites varied as a function of the time of infection.
doi:10.1128/IAI.73.5.3124-3127.2005
PMCID: PMC1087372  PMID: 15845520
6.  Complex Function for SicA, a Salmonella enterica Serovar Typhimurium Type III Secretion-Associated Chaperone 
Journal of Bacteriology  2000;182(8):2262-2268.
Salmonella enterica encodes a type III secretion system within a pathogenicity island located at centisome 63 that is essential for virulence. All type III secretion systems require the function of a family of low-molecular-weight proteins that aid the secretion process by acting as partitioning factors and/or secretion pilots. One such protein is SicA, which is encoded immediately upstream of the type III secreted proteins SipB and SipC. We found that the absence of SicA results in the degradation of both SipB and SipC. Interestingly, in the absence of SipC, SipB was not only stable but also secreted at wild-type levels in a sicA mutant background, indicating that SicA is not required for SipB secretion. We also found that SicA is capable of binding both SipB and SipC. These results are consistent with a SicA role as a partitioning factor for SipB and SipC, thereby preventing their premature association and degradation. We also found that introduction of a sicA null mutation results in the lack of expression of SopE, another type III-secreted protein. Such an effect was shown to be transcriptional. Introduction of a loss-of-function sipC mutation into the sicA mutant background rescued sopE expression. These results indicate that the effect of sicA on sopE expression is indirect and most likely exerted through a regulatory factor(s) partitioned by SicA from SipC. These studies therefore describe a surprisingly complex function for the Salmonella enterica type III secretion-associated chaperone SicA.
PMCID: PMC111276  PMID: 10735870

Results 1-6 (6)