PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
2.  Significance of antiprothrombin antibodies in patients with systemic lupus erythematosus: clinical evaluation of the antiprothrombin assay and the antiphosphatidylserine/prothrombin assay, and comparison with other antiphospholipid antibody assays 
Modern Rheumatology  2006;16(3):158-164.
Antibodies against prothrombin are detected by enzyme immunoassays (EIA) in sera of patients with antiphospholipid syndrome (APS). However, there are two methods for antiprothrombin EIA; one that uses high binding plates (aPT-A), and another that utilizes phosphatidylserine bound plates (aPS/PT). We aimed to evaluate and compare aPT-A and aPS/PT in a clinical setting. We performed EIA for anti-PT, anti-PS/PT, IgG, and IgM anticardiolipin antibodies (aCL), and IgG β2-glycoprotein I-dependent aCL (aβ2GPI/CL) with serum samples from 139 systemic lupus erythematosus (SLE) patients (16 with history of at least one thrombotic episode) and 148 controls. We observed that: (1) although titers of anti-PT and anti-PS/PT were significantly related with each other (P < 0.0001, ρ = 0.548), titer of anti-PT and anti-PS/PT differed greatly in some samples; (2) odds ratio and 95% confidence interval for each assay was 3.556 (1.221–10.355) for aPT-A, 4.591 (1.555–15.560) for aPS/PT, 4.204 (1.250–14.148) for IgG aCL, 1.809 (0.354–9.232) for IgM aCL, and 7.246 (2.391–21.966) for aβ2GPI/CL. We conclude that, while all EIA performed in this study except IgM aCL are of potential value in assessing the risk of thrombosis, aPS/PT and aβ2GPI/CL seemed to be highly valuable in clinical practice, and that autoantibodies detected by anti-PT and anti-PS/PT are not completely identical.
doi:10.1007/s10165-006-0481-7
PMCID: PMC2778700  PMID: 16767554
Antiphospholipid syndrome; Antiprothrombin antibody; Enzyme immunoassay; Systemic lupus erythematosus (SLE)
3.  Arthritogenic T cell epitope in glucose-6-phosphate isomerase-induced arthritis 
Arthritis Research & Therapy  2008;10(6):R130.
Introduction
Arthritis induced by immunisation with glucose-6-phosphate isomerase (GPI) in DBA/1 mice was proven to be T helper (Th) 17 dependent. We undertook this study to identify GPI-specific T cell epitopes in DBA/1 mice (H-2q) and investigate the mechanisms of arthritis generation.
Methods
For epitope mapping, the binding motif of the major histocompatibility complex (MHC) class II (I-Aq) from DBA/1 mice was identified from the amino acid sequence of T cell epitopes and candidate peptides of T cell epitopes in GPI-induced arthritis were synthesised. Human GPI-primed CD4+ T cells and antigen-presenting cells (APCs) were co-cultured with each synthetic peptide and the cytokine production was measured by ELISA to identify the major epitopes. Synthetic peptides were immunised in DBA/1 mice to investigate whether arthritis could be induced by peptides. After immunisation with the major epitope, anti-interleukin (IL) 17 monoclonal antibody (mAb) was injected to monitor arthritis score. To investigate the mechanisms of arthritis induced by a major epitope, cross-reactivity to mouse GPI peptide was analysed by flow cytometry and anti-GPI antibodies were measured by ELISA. Deposition of anti-GPI antibodies on the cartilage surface was detected by immunohistology.
Results
We selected 32 types of peptides as core sequences from the human GPI 558 amino acid sequence, which binds the binding motif, and synthesised 25 kinds of 20-mer peptides for screening, each containing the core sequence at its centre. By epitope mapping, human GPI325–339 was found to induce interferon (IFN) γ and IL-17 production most prominently. Immunisation with human GPI325–339 could induce polyarthritis similar to arthritis induced by human GPI protein, and administration of anti-IL-17 mAb significantly ameliorated arthritis (p < 0.01). Th17 cells primed with human GPI325–339 cross-reacted with mouse GPI325–339, and led B cells to produce anti-mouse GPI antibodies, which were deposited on cartilage surface.
Conclusions
Human GPI325–339 was identified as a major epitope in GPI-induced arthritis, and proved to have the potential to induce polyarthritis. Understanding the pathological mechanism of arthritis induced by an immune reaction to a single short peptide could help elucidate the pathogenic mechanisms of autoimmune arthritis.
doi:10.1186/ar2545
PMCID: PMC2656230  PMID: 18992137
4.  Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region 
Arthritis Research & Therapy  2008;10(5):R113.
Introduction
Recent studies identified STAT4 (signal transducers and activators of transcription-4) as a susceptibility gene for systemic lupus erythematosus (SLE). STAT1 is encoded adjacently to STAT4 on 2q32.2-q32.3, upregulated in peripheral blood mononuclear cells from SLE patients, and functionally relevant to SLE. This study was conducted to test whether STAT4 is associated with SLE in a Japanese population also, to identify the risk haplotype, and to examine the potential genetic contribution of STAT1. To accomplish these aims, we carried out a comprehensive association analysis of 52 tag single nucleotide polymorphisms (SNPs) encompassing the STAT1-STAT4 region.
Methods
In the first screening, 52 tag SNPs were selected based on HapMap Phase II JPT (Japanese in Tokyo, Japan) data, and case-control association analysis was carried out on 105 Japanese female patients with SLE and 102 female controls. For associated SNPs, additional cases and controls were genotyped and association was analyzed using 308 SLE patients and 306 controls. Estimation of haplotype frequencies and an association study using the permutation test were performed with Haploview version 4.0 software. Population attributable risk percentage was estimated to compare the epidemiological significance of the risk genotype among populations.
Results
In the first screening, rs7574865, rs11889341, and rs10168266 in STAT4 were most significantly associated (P < 0.01). Significant association was not observed for STAT1. Subsequent association studies of the three SNPs using 308 SLE patients and 306 controls confirmed a strong association of the rs7574865T allele (SLE patients: 46.3%, controls: 33.5%, P = 4.9 × 10-6, odds ratio 1.71) as well as TTT haplotype (rs10168266/rs11889341/rs7574865) (P = 1.5 × 10-6). The association was stronger in subgroups of SLE with nephritis and anti-double-stranded DNA antibodies. Population attributable risk percentage was estimated to be higher in the Japanese population (40.2%) than in Americans of European descent (19.5%).
Conclusions
The same STAT4 risk allele is associated with SLE in Caucasian and Japanese populations. Evidence for a role of STAT1 in genetic susceptibility to SLE was not detected. The contribution of STAT4 for the genetic background of SLE may be greater in the Japanese population than in Americans of European descent.
doi:10.1186/ar2516
PMCID: PMC2592800  PMID: 18803832
5.  Therapeutic effects of antibodies to tumor necrosis factor-α, interleukin-6 and cytotoxic T-lymphocyte antigen 4 immunoglobulin in mice with glucose-6-phosphate isomerase induced arthritis 
Introduction
Immunization with glucose-6-phosphate isomerase (GPI) induces severe arthritis in DBA/1 mice. The present study was designed to identify the cytokines and co-stimulatory molecules involved in the development of GPI-induced arthritis.
Methods
Arthritis was induced in DBA/1 mice with 300 μg human recombinant GPI. CD4+ T cells and antigen-presenting cells from splenocytes of arthritic mice were cultured in the presence of GPI. Tumor necrosis factor (TNF)-α, IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-12 levels were assessed using cytometric bead array. Monoclonal antibodies to TNF-α, IFN-γ, IL-12, CD40L, inducible co-stimulator (ICOS), and cytotoxic T-lymphocyte antigen 4 immunoglobulin (CTLA-4Ig) were used to block TNF-α and IFN-γ production, examine clinical index in mice with GPI-induced arthritis, and determine anti-GPI antibody production.
Results
Large amounts of TNF-α and IFN-γ and small amounts of IL-2 and IL-6 were produced by splenocytes from mice with GPI-induced arthritis. Anti-TNF-α mAbs and CTLA-4Ig suppressed TNF-α production, whereas anti-IFN-γ mAbs, anti-IL-12 mAbs, and CTLA-4 Ig inhibited IFN-γ production. A single injection of anti-TNF-α and anti-IL-6 mAbs and two injections of CTLA-4Ig reduced the severity of arthritis in mice, whereas injections of anti-IFN-γ and anti-IL-12 mAbs tended to exacerbate arthritis. Therapeutic efficacy tended to correlate with reduction in anti-GPI antibodies.
Conclusion
TNF-α and IL-6 play an important role in GPI-induced arthritis, whereas IFN-γ appears to function as a regulator of arthritis. Because the therapeutic effects of the tested molecules used in this study are similar to those in patients with rheumatoid arthritis, GPI-induced arthritis appears to be a suitable tool with which to examine the effect of various therapies on rheumatoid arthritis.
doi:10.1186/ar2437
PMCID: PMC2483457  PMID: 18534002
6.  A functional variant of Fcγ receptor IIIA is associated with rheumatoid arthritis in individuals who are positive for anti-glucose-6-phosphate isomerase antibodies 
Arthritis Research & Therapy  2005;7(6):R1183-R1188.
Anti-glucose-6-phosphate isomerase (GPI) antibodies are known to be arthritogenic autoantibodies in K/B×N mice, although some groups have reported that few healthy humans retain these antibodies. The expression of Fcγ receptors (FcγRs) is genetically regulated and has strong implications for the development of experimental arthritis. The interaction between immune complexes and FcγRs might therefore be involved in the pathogenesis of some arthritic conditions. To explore the relationship between functional polymorphisms in FcγRs (FCGR3A-158V/F and FCGR2A-131H/R) and arthritis in individuals positive for anti-GPI antibodies, we evaluated these individuals with respect to FCGR genotype. Genotyping for FCGR3A-158V/F and FCGR2A-131H/R was performed by PCR amplification of the polymorphic site, followed by site specific restriction digestion using the genome of 187 Japanese patients with rheumatoid arthritis (including 23 who were anti-GPI antibody positive) and 158 Japanese healthy individuals (including nine who were anti-GPI antibody positive). We report here on the association of FCGR3A-158V/F functional polymorphism with anti-GPI antibody positive status. Eight out of nine healthy individuals who were positive for anti-GPI antibodies possessed the homozygous, low affinity genotype FCGR3A-158F (odds ratio = 0.09, 95% confidence interval 0.01–0.89; P = 0.0199), and probably were 'protected' from arthritogenic antibodies. Moreover, among those who were homozygous for the high affinity genotype FCGR3A-158V/V, there were clear differences in anti-human and anti-rabbit GPI titres between patients with rheumatoid arthritis and healthy subjects (P = 0.0027 and P = 0.0015, respectively). Our findings provide a molecular model of the genetic regulation of autoantibody-induced arthritis by allele-specific affinity of the FcγRs.
doi:10.1186/ar1802
PMCID: PMC1297563  PMID: 16277670

Results 1-6 (6)