PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Polychotomization of continuous variables in regression models based on the overall C index 
Background
When developing multivariable regression models for diagnosis or prognosis, continuous independent variables can be categorized to make a prediction table instead of a prediction formula. Although many methods have been proposed to dichotomize prognostic variables, to date there has been no integrated method for polychotomization. The latter is necessary when dichotomization results in too much loss of information or when central values refer to normal states and more dispersed values refer to less preferable states, a situation that is not unusual in medical settings (e.g. body temperature, blood pressure). The goal of our study was to develop a theoretical and practical method for polychotomization.
Methods
We used the overall discrimination index C, introduced by Harrel, as a measure of the predictive ability of an independent regressor variable and derived a method for polychotomization mathematically. Since the naïve application of our method, like some existing methods, gives rise to positive bias, we developed a parametric method that minimizes this bias and assessed its performance by the use of Monte Carlo simulation.
Results
The overall C is closely related to the area under the ROC curve and the produced di(poly)chotomized variable's predictive performance is comparable to the original continuous variable. The simulation shows that the parametric method is essentially unbiased for both the estimates of performance and the cutoff points. Application of our method to the predictor variables of a previous study on rhabdomyolysis shows that it can be used to make probability profile tables that are applicable to the diagnosis or prognosis of individual patient status.
Conclusion
We propose a polychotomization (including dichotomization) method for independent continuous variables in regression models based on the overall discrimination index C and clarified its meaning mathematically. To avoid positive bias in application, we have proposed and evaluated a parametric method. The proposed method for polychotomizing continuous regressor variables performed well and can be used to create probability profile tables.
doi:10.1186/1472-6947-6-41
PMCID: PMC1770908  PMID: 17169154
2.  Development and validation of MIX: comprehensive free software for meta-analysis of causal research data 
Background
Meta-analysis has become a well-known method for synthesis of quantitative data from previously conducted research in applied health sciences. So far, meta-analysis has been particularly useful in evaluating and comparing therapies and in assessing causes of disease. Consequently, the number of software packages that can perform meta-analysis has increased over the years. Unfortunately, it can take a substantial amount of time to get acquainted with some of these programs and most contain little or no interactive educational material. We set out to create and validate an easy-to-use and comprehensive meta-analysis package that would be simple enough programming-wise to remain available as a free download. We specifically aimed at students and researchers who are new to meta-analysis, with important parts of the development oriented towards creating internal interactive tutoring tools and designing features that would facilitate usage of the software as a companion to existing books on meta-analysis.
Results
We took an unconventional approach and created a program that uses Excel as a calculation and programming platform. The main programming language was Visual Basic, as implemented in Visual Basic 6 and Visual Basic for Applications in Excel 2000 and higher. The development took approximately two years and resulted in the 'MIX' program, which can be downloaded from the program's website free of charge. Next, we set out to validate the MIX output with two major software packages as reference standards, namely STATA (metan, metabias, and metatrim) and Comprehensive Meta-Analysis Version 2. Eight meta-analyses that had been published in major journals were used as data sources. All numerical and graphical results from analyses with MIX were identical to their counterparts in STATA and CMA. The MIX program distinguishes itself from most other programs by the extensive graphical output, the click-and-go (Excel) interface, and the educational features.
Conclusion
The MIX program is a valid tool for performing meta-analysis and may be particularly useful in educational environments. It can be downloaded free of charge via or .
doi:10.1186/1471-2288-6-50
PMCID: PMC1626481  PMID: 17038197

Results 1-2 (2)