PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Effect of Chlorogenic Acid (5-Caffeoylquinic Acid) Isolated from Baccharis oxyodonta on the Structure and Pharmacological Activities of Secretory Phospholipase A2 from Crotalus durissus terrificus 
BioMed Research International  2014;2014:726585.
The aim of this paper was to investigate the effect of chlorogenic acid (5-caffeoylquinic acid, 5CQA), isolated from Baccharis oxyodonta, on the structure and pharmacological effect of secretory phospholipase A2 (sPLA2) from Crotalus durissus terrificus. All in vitro and in vivo experiments were conducted using a purified sPLA2 compared under the same experimental conditions with sPLA2 : 5CQA. 5CQA induced several discrete modifications in the secondary structure and the hydrophobic characteristics of native sPLA2 that induced slight changes in the α-helical content, increase in the random coil structure, and decrease of fluorescence of native sPLA2. Moreover, 5CQA significantly decreased the enzymatic activity and the oedema and myonecrosis induced by native sPLA2. As the catalytic activity of sPLA2 plays an important role in several of its biological and pharmacological properties, antibacterial activity was used to confirm the decrease in its enzymatic activity by 5CQA, which induced massive bacterial cell destruction. We found that 5CQA specifically abolished the enzymatic activity of sPLA2 and induced discrete protein unfolding that mainly involved the pharmacological site of sPLA2. These results showed the potential application of 5CQA in the snake poisoning treatment and modulation of the pathological effect of inflammation induced by secretory PLA2.
doi:10.1155/2014/726585
PMCID: PMC4167235  PMID: 25258715
2.  Identification of two novel cytolysins from the hydrozoan Olindias sambaquiensis (Cnidaria) 
Background
Although the hydrozoan Olindias sambaquiensis is the most common jellyfish associated with human envenomation in southeastern and southern Brazil, information about the composition of its venom is rare. Thus, the present study aimed to analyze pharmacological aspects of O. sambaquiensis venom as well as clinical manifestations observed in affected patients. Crude protein extracts were prepared from the tentacles of animals; peptides and proteins were sequenced and submitted to circular dichroism spectroscopy. Creatine kinase, cytotoxicity and hemolytic activity were evaluated by specific methods.
Results
We identified two novel cytolysins denominated oshem 1 and oshem 2 from the tentacles of this jellyfish. The cytolysins presented the amino acid sequences NEGKAKCGNTAGSKLTFKSADECTKTGQK (oshem 1) and NNSKAKCGDLAGWSKLTFKSADECTKTGQKS (oshem 2) with respective molecular masses of 3.013 kDa and 3.375 kDa. Circular dichroism revealed that oshem 1 has random coils and small α-helix conformation as main secondary structure whereas oshem 2 presents mainly random coils as its main secondary structure probably due to the presence of W (13) in oshem 2. The hemolysis levels induced by oshem 1 and oshem 2 using a peptide concentration of 0.2 mg/mL were, respectively, 51.7 ± 6.5% and 32.9 ± 8.7% (n = 12 and p ≤ 0.05). Oshem 1 and oshem 2 showed significant myonecrotic activity, evaluated by respective CK level measurements of 1890.4 ± 89 and 1212.5 ± 103 (n = 4 and p ≤ 0.05). In addition, myonecrosis was also evaluated by cell survival, which was measured at 72.4 ± 8.6% and 83.5 ± 6.7% (n = 12 and p ≤ 0.05), respectively. The structural analysis showed that both oshem 1 and oshem 2 should be classified as a small basic hemolytic peptide.
Conclusion
The amino acid sequences of two peptides were highly similar while the primary amino acid sequence analysis revealed W (22th) as the most important mutation. Finally oshem 1 and oshem 2 are the first cytolytic peptides isolated from the Olindias sambaquiensis and should probably represent a novel class of cytolytic peptides.
doi:10.1186/1678-9199-20-10
PMCID: PMC3987661  PMID: 24666608
Olindias sambaquiensis; Hemolytic; Myonecrosis; Cytotoxicity; Cytolysin; Cnidaria venom
3.  An Evaluation of 3-Rhamnosylquercetin, a Glycosylated Form of Quercetin, against the Myotoxic and Edematogenic Effects of sPLA2 from Crotalus durissus terrificus 
BioMed Research International  2014;2014:341270.
This paper shows the results of quercitrin effects on the structure and biological activity of secretory phospholipase (sPLA2) from Crotalus durissus terrificus, which is the main toxin involved in the pharmacological effects of this snake venom. According to our mass spectrometry and circular dichroism results, quercetin was able to promote a chemical modification of some amino acid residues and modify the secondary structure of C. d. terrificus sPLA2. Moreover, molecular docking studies showed that quercitrin can establish chemical interactions with some of the crucial amino acid residues involved in the enzymatic activity of the sPLA2, indicating that this flavonoid could also physically impair substrate molecule access to the catalytic site of the toxin. Additionally, in vitro and in vivo assays showed that the quercitrin strongly diminished the catalytic activity of the protein, altered its Vmax and Km values, and presented a more potent inhibition of essential pharmacological activities in the C. d. terrificus sPLA2, such as its myotoxicity and edematogenic effect, in comparison to quercetin. Thus, we concluded that the rhamnose group found in quercitrin is most likely essential to the antivenom activities of this flavonoid against C. d. terrificus sPLA2.
doi:10.1155/2014/341270
PMCID: PMC3947839  PMID: 24696848
4.  Vasoconstrictor effect of Africanized honeybee (Apis mellifera L.) venom on rat aorta 
Background
Apis mellifera stings are a problem for public health worldwide, particularly in Latin America due to the aggressiveness of its Africanized honeybees. Massive poisoning by A. mellifera venom (AmV) affects mainly the cardiovascular system, and several works have described its actions on heart muscle. Nevertheless, no work on the pharmacological action mechanisms of the AmV in isolated aorta has been reported. Thus, the present work aimed to investigate the actions of AmV and its main fractions, phospholipase A2 (PLA2) and melittin, on isolated aorta rings and a probable action mechanism.
Results
AmV and the complex PLA2 + melittin (0.1-50 μg/mL) caused contraction in endothelium-containing aorta rings, but neither isolated PLA2 nor melittin were able to reproduce the effect. Endothelium removal did not change the maximum vasoconstrictor effect elicited by AmV. Ca2+-free medium, as well as treatment with phentolamine (5 μM), verapamil (10 μM), losartan (100 μM), and U-73122 (10 μM, a phospholipase C inhibitor), eliminated the AmV-induced contractile effects.
Conclusions
In conclusion, AmV caused contractile effect in aorta rings probably through the involvement of voltage-operated calcium channels, AT1 and α-adrenergic receptors via the downstream activation of phospholipase C. The protein complex, PLA2 + melittin, was also able to induce vasoconstriction, whereas the isolated proteins were not.
doi:10.1186/1678-9199-19-24
PMCID: PMC3849866  PMID: 24066982
Apis mellifera; Venom; Mellitin; Phospholipase A2; Aorta
5.  Evaluation of Macroalgae Sulfated Polysaccharides on the Leishmania (L.) amazonensis Promastigote 
Marine Drugs  2013;11(3):934-943.
The sulfated polysaccharides from Solieria filiformis (Sf), Botryocladia occidentalis (Bo), Caulerpa racemosa (Cr) and Gracilaria caudata (Gc) were extracted and extensively purified. These compounds were then subjected to in vitro assays to evaluate the inhibition of these polysaccharides on the growth of Leishmania (L.) amazonensis promastigotes. Under the same assay conditions, only three of the four sulfated polysaccharides were active against L. amazonensis, and the polysaccharide purified from Cr was the most potent (EC50 value: 34.5 μg/mL). The polysaccharides derived from Bo and Sf demonstrated moderate anti-leishmanial activity (EC50 values of 63.7 μg/mL and 137.4 μg/mL). In addition, we also performed in vitro cytotoxic assays toward peritoneal macrophages and J774 macrophages. For the in vitro cytotoxicity assay employing J774 cells, all of the sulfated polysaccharides decreased cell survival, with CC50 values of 27.3 μg/mL, 49.3 μg/mL, 73.2 μg/mL, and 99.8 μg/mL for Bo, Cr, Gc, and Sf, respectively. However, none of the sulfated polysaccharides reduced the cell growth rate of the peritoneal macrophages. These results suggest that macroalgae contain compounds with various chemical properties that can control specific pathogens. According to our results, the assayed sulfated polysaccharides were able to modulate the growth rate and cell survival of Leishmania (L.) amazonensis promastigotes in in vitro assays, and these effects involved the interaction of the sulfated polysaccharides on the cell membrane of the parasites.
doi:10.3390/md11030934
PMCID: PMC3705380  PMID: 23519148
macroalgae; Leishmania (L.) amazonensis; sulfated polysaccharides; Solieria filiformis; Botryocladia occidentalis; Caulerpa racemosa; Gracilaria caudate
6.  Harpalycin 2 inhibits the enzymatic and platelet aggregation activities of PrTX-III, a D49 phospholipase A2 from Bothrops pirajai venom 
Background
Harpalycin 2 (HP-2) is an isoflavone isolated from the leaves of Harpalyce brasiliana Benth., a snakeroot found in northeast region of Brazil and used in folk medicine to treat snakebite. Its leaves are said to be anti-inflammatory. Secretory phospholipases A2 are important toxins found in snake venom and are structurally related to those found in inflammatory conditions in mammals, as in arthritis and atherosclerosis, and for this reason can be valuable tools for searching new anti-phospholipase A2 drugs.
Methods
HP-2 and piratoxin-III (PrTX-III) were purified through chromatographic techniques. The effect of HP-2 in the enzymatic activity of PrTX-III was carried out using 4-nitro-3-octanoyloxy-benzoic acid as the substrate. PrTX-III induced platelet aggregation was inhibited by HP-2 when compared to aristolochic acid and p-bromophenacyl bromide (p-BPB). In an attempt to elucidate how HP-2 interacts with PrTX-III, mass spectrometry, circular dichroism and intrinsic fluorescence analysis were performed. Docking scores of the ligands (HP-2, aristolochic acid and p-BPB) using PrTX-III as target were also calculated.
Results
HP-2 inhibited the enzymatic activity of PrTX-III (IC50 11.34 ± 0.28 μg/mL) although it did not form a stable chemical complex in the active site, since mass spectrometry measurements showed no difference between native (13,837.34 Da) and HP-2 treated PrTX-III (13,856.12 Da). A structural analysis of PrTX-III after treatment with HP-2 showed a decrease in dimerization and a slight protein unfolding. In the platelet aggregation assay, HP-2 previously incubated with PrTX-III inhibited the aggregation when compared with untreated protein. PrTX-III chemical treated with aristolochic acid and p-BPB, two standard PLA2 inhibitors, showed low inhibitory effects when compared with the HP-2 treatment. Docking scores corroborated these results, showing higher affinity of HP-2 for the PrTX-III target (PDB code: 1GMZ) than aristolochic acid and p-BPB. HP-2 previous incubated with the platelets inhibits the aggregation induced by untreated PrTX-III as well as arachidonic acid.
Conclusion
HP-2 changes the structure of PrTX-III, inhibiting the enzymatic activity of this enzyme. In addition, PrTX-III platelet aggregant activity was inhibited by treatment with HP-2, p-BPB and aristolochic acid, and these results were corroborated by docking scores.
doi:10.1186/1472-6882-12-139
PMCID: PMC3520877  PMID: 22925825
PrTX-III; Phospholipase A2; Bothrops pirajai; Harpalyce brasiliana; Isoflavone
7.  Inhibition of Neurotoxic Secretory Phospholipases A2 Enzymatic, Edematogenic, and Myotoxic Activities by Harpalycin 2, an Isoflavone Isolated from Harpalyce brasiliana Benth 
Secretory phospholipases A2 (sPLA2) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA2 from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA2 tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA2 administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA2s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA2 inhibition.
doi:10.1155/2012/987517
PMCID: PMC3415135  PMID: 22899963
8.  Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation 
Parasites & Vectors  2012;5:64.
Background
Leishmania (Viannia) shawi parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from L. (V.) shawi promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained.
Methods
F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated.
Results
The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8+T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4+ central memory T lymphocytes and activation of both CD4+ and CD8+ T cells. In addition, F1-immunized groups showed an increase in IgG2a levels.
Conclusions
The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.
doi:10.1186/1756-3305-5-64
PMCID: PMC3342111  PMID: 22463817
Leishmania (Viannia) shawi; Proteic fraction; Immunization; Cellular immune response; Long-term protection
9.  Modulation of the pharmacological effects of enzymatically-active PLA2 by BTL-2, an isolectin isolated from the Bryothamnion triquetrum red alga 
BMC Biochemistry  2008;9:16.
Background
An interaction between lectins from marine algae and PLA2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA2 isolated from rattlesnake venom (Crotalus durissus cascavella), to better understand the enzymatic and pharmacological mechanisms of the PLA2 and its complex.
Results
This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity.
The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24–26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap). PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm.
PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound.
Conclusion
The unexpected results observed for the PLA2-BTL-2 complex strongly suggest that the pharmacological activity of this PLA2 is not solely dependent on the presence of enzymatic activity, and that other pharmacological regions may also be involved. In addition, we describe for the first time an interaction between two different molecules, which form a stable complex with significant changes in their original biological action. This opens new possibilities for understanding the function and action of crude venom, an extremely complex mixture of different molecules.
doi:10.1186/1471-2091-9-16
PMCID: PMC2443151  PMID: 18534036
10.  Purification and Preliminary Crystallographic Analysis of a New Lys49-PLA2 from B. Jararacussu 
BjVIII is a new myotoxic Lys49-PLA2 isolated from Bothrops jararacussu venom that exhibits atypical effects on human platelet aggregation. To better understand the mode of action of BjVIII, crystallographic studies were initiated. Two crystal forms were obtained, both containing two molecules in the asymmetric unit (ASU). Synchrotron radiation diffraction data were collected to 2.0 Å resolution and 1.9 Å resolution for crystals belonging to the space group P212121 (a = 48.4 Å, b = 65.3 Å, c = 84.3 Å) and space group P3121 (a = b = 55.7 Å, c = 127.9 Å), respectively. Refinement is currently in progress and the refined structures are expected to shed light on the unusual platelet aggregation activity observed for BjVIII.
PMCID: PMC2635704  PMID: 19325781
Lys49-PLA2; Bothrops jararacussu; platelet aggregation; phospholipase crystallographic analysis
11.  Crystallization and preliminary X-ray diffraction analysis of a new chitin-binding protein from Parkia platycephala seeds 
Crystals of P. platycephala chintinase/lectin (PPL-2) belong to the orthorhombic space group P212121, with unit-cell parameters a = 55.19, b = 59.95, c = 76.60 Å. The preliminary cystal structure of PPL-2 was solved at a resolution of 1.73 Å by molecular replacement, presenting a correlation coefficient of 0.558 and an R factor of 0.439.
A chitin-binding protein named PPL-2 was purified from Parkia platycephala seeds and crystallized. Crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 55.19, b = 59.95, c = 76.60 Å, and grew over several days at 293 K using the hanging-drop method. Using synchrotron radiation, a complete structural data set was collected to 1.73 Å resolution. The preliminary crystal structure of PPL-2, determined by molecular replacement, presents a correlation coefficient of 0.558 and an R factor of 0.439. Crystallographic refinement is in progress.
doi:10.1107/S1744309105024462
PMCID: PMC1978108  PMID: 16511174
chitin-binding proteins; chitinases; Parkia platycephala; lectins

Results 1-11 (11)