PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  c-Jun N-terminal kinase in synergistic neurite outgrowth in PC12 cells mediated through P90RSK 
BMC Neuroscience  2013;14:153.
Background
Synergistic multi-ligand treatments that can induce neuronal differentiation offer valuable strategies to regulate and modulate neurite outgrowth. Whereas the signaling pathways mediating single ligand-induced neurite outgrowth, such as Akt, extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (P38), have been extensively studied, the mechanisms underlying multi-ligand synergistic neurite outgrowth are poorly understood. In an attempt to gain insight into synergistic neurite outgrowth, PC12 cells were treated with one of three combinations: pituitary adenylate cyclase-activating peptide (PACAP) with epidermal growth factor (EP), basic fibroblast growth factor (FP), or nerve growth factor (NP) and then challenged with the appropriate kinase inhibitors to assess the signaling pathways involved in the process.
Results
Response surface analyses indicated that synergistic neurite outgrowth was regulated by distinct pathways in these systems. Synergistic increases in the phosphorylation of Erk and JNK, but not Akt or P38, were observed with the three growth factor-PACAP combinations. Unexpectedly, we identified a synergistic increase in JNK phosphorylation, which was involved in neurite outgrowth in the NP and FP, but not EP, systems. Inhibition of JNK using the SP600125 inhibitor reduced phosphorylation of 90 kDa ribosomal S6 kinase (P90RSK) in the NP and FP, but not EP, systems. This suggested the involvement of P90RSK in mediating the differential effects of JNK in synergistic neurite outgrowth.
Conclusions
Taken together, these findings reveal the involvement of distinct signaling pathways in regulating neurite outgrowth in response to different synergistic growth factor-PACAP treatments. Our findings demonstrate a hitherto unrecognized mechanism of JNK-P90RSK in mediating synergistic neurite outgrowth induced by the co-treatment of growth factors and PACAP.
doi:10.1186/1471-2202-14-153
PMCID: PMC4029309  PMID: 24330599
PC12; Synergistic; NGF; FGFb; EGF; PACAP; Neurite outgrowth; JNK; P90RSK
2.  Statistical Experimental Design Guided Optimization of a One-Pot Biphasic Multienzyme Total Synthesis of Amorpha-4,11-diene 
PLoS ONE  2013;8(11):e79650.
In vitro synthesis of chemicals and pharmaceuticals using enzymes is of considerable interest as these biocatalysts facilitate a wide variety of reactions under mild conditions with excellent regio-, chemo- and stereoselectivities. A significant challenge in a multi-enzymatic reaction is the need to optimize the various steps involved simultaneously so as to obtain high-yield of a product. In this study, statistical experimental design was used to guide the optimization of a total synthesis of amorpha-4,11-diene (AD) using multienzymes in the mevalonate pathway. A combinatorial approach guided by Taguchi orthogonal array design identified the local optimum enzymatic activity ratio for Erg12:Erg8:Erg19:Idi:IspA to be 100∶100∶1∶25∶5, with a constant concentration of amorpha-4,11-diene synthase (Ads, 100 mg/L). The model also identified an unexpected inhibitory effect of farnesyl pyrophosphate synthase (IspA), where the activity was negatively correlated with AD yield. This was due to the precipitation of farnesyl pyrophosphate (FPP), the product of IspA. Response surface methodology was then used to optimize IspA and Ads activities simultaneously so as to minimize the accumulation of FPP and the result showed that Ads to be a critical factor. By increasing the concentration of Ads, a complete conversion (∼100%) of mevalonic acid (MVA) to AD was achieved. Monovalent ions and pH were effective means of enhancing the specific Ads activity and specific AD yield significantly. The results from this study represent the first in vitro reconstitution of the mevalonate pathway for the production of an isoprenoid and the approaches developed herein may be used to produce other isopentenyl pyrophosphate (IPP)/dimethylallyl pyrophosphate (DMAPP) based products.
doi:10.1371/journal.pone.0079650
PMCID: PMC3835790  PMID: 24278153
3.  Combinatorial Engineering of 1-Deoxy-D-Xylulose 5-Phosphate Pathway Using Cross-Lapping In Vitro Assembly (CLIVA) Method 
PLoS ONE  2013;8(11):e79557.
The ability to assemble multiple fragments of DNA into a plasmid in a single step is invaluable to studies in metabolic engineering and synthetic biology. Using phosphorothioate chemistry for high efficiency and site specific cleavage of sequences, a novel ligase independent cloning method (cross-lapping in vitro assembly, CLIVA) was systematically and rationally optimized in E. coli. A series of 16 constructs combinatorially expressing genes encoding enzymes in the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway were assembled using multiple DNA modules. A plasmid (21.6 kb) containing 16 pathway genes, was successfully assembled from 7 modules with high efficiency (2.0 x 103 cfu/ µg input DNA) within 2 days. Overexpressions of these constructs revealed the unanticipated inhibitory effects of certain combinations of genes on the production of amorphadiene. Interestingly, the inhibitory effects were correlated to the increase in the accumulation of intracellular methylerythritol cyclodiphosphate (MEC), an intermediate metabolite in the DXP pathway. The overexpression of the iron sulfur cluster operon was found to modestly increase the production of amorphadiene. This study demonstrated the utility of CLIVA in the assembly of multiple fragments of DNA into a plasmid which enabled the rapid exploration of biological pathways.
doi:10.1371/journal.pone.0079557
PMCID: PMC3818232  PMID: 24223968
4.  Combining Genotype Improvement and Statistical Media Optimization for Isoprenoid Production in E. coli 
PLoS ONE  2013;8(10):e75164.
Isoprenoids are a large and diverse class of compounds that includes many high value natural products and are thus in great demand. To meet the increasing demand for isoprenoid compounds, metabolic engineering of microbes has been used to produce isoprenoids in an economical and sustainable manner. To achieve high isoprenoid yields using this technology, the availability of metabolic precursors feeding the deoxyxylulose phosphate (DXP) pathway, responsible for isoprenoid biosynthesis, has to be optimized. In this study, phosphoenolpyruvate, a vital DXP pathway precursor, was enriched by deleting the genes encoding the carbohydrate phosphotransferase system (PTS) in E. coli. Production of lycopene (a C40 isoprenoid) was maximized by optimizing growth medium and culture conditions. In optimized conditions, the lycopene yield from PTS mutant was seven fold higher than that obtained from the wild type strain. This resulted in the highest reported specific yield of lycopene produced from the DXP pathway in E. coli to date (20,000 µg/g dry cell weight). Both the copy number of the plasmid encoding the lycopene biosynthetic genes and the expression were found to be increased in the optimized media. Deletion of PTS together with a similar optimization strategy was also successful in enhancing the production of amorpha-1,4-diene, a distinct C15 isoprenoid, suggesting that the approaches developed herein can be generally applied to optimize production of other isoprenoids.
doi:10.1371/journal.pone.0075164
PMCID: PMC3790805  PMID: 24124471
5.  Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production 
Background
Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP) and the impact of inclusion body formation on metabolic engineering of microbes.
Results
Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA), but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway) was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway.
Conclusion
This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites.
doi:10.1186/1475-2859-11-148
PMCID: PMC3545872  PMID: 23148661
Isoprenoids; Protein solubility; Deoxyxylulose phosphate pathway; Activity analysis; Metabolic engineering
6.  Metabolite Profiling Identified Methylerythritol Cyclodiphosphate Efflux as a Limiting Step in Microbial Isoprenoid Production 
PLoS ONE  2012;7(11):e47513.
Isoprenoids are natural products that are all derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These precursors are synthesized either by the mevalonate (MVA) pathway or the 1-Deoxy-D-Xylulose 5-Phosphate (DXP) pathway. Metabolic engineering of microbes has enabled overproduction of various isoprenoid products from the DXP pathway including lycopene, artemisinic acid, taxadiene and levopimaradiene. To date, there is no method to accurately measure all the DXP metabolic intermediates simultaneously so as to enable the identification of potential flux limiting steps. In this study, a solid phase extraction coupled with ultra performance liquid chromatography mass spectrometry (SPE UPLC-MS) method was developed. This method was used to measure the DXP intermediates in genetically engineered E. coli. Unexpectedly, methylerythritol cyclodiphosphate (MEC) was found to efflux when certain enzymes of the pathway were over-expressed, demonstrating the existence of a novel competing pathway branch in the DXP metabolism. Guided by these findings, ispG was overexpressed and was found to effectively reduce the efflux of MEC inside the cells, resulting in a significant increase in downstream isoprenoid production. This study demonstrated the necessity to quantify metabolites enabling the identification of a hitherto unrecognized pathway and provided useful insights into rational design in metabolic engineering.
doi:10.1371/journal.pone.0047513
PMCID: PMC3487848  PMID: 23133596
7.  Mitochondrial Localized STAT3 Is Involved in NGF Induced Neurite Outgrowth 
PLoS ONE  2011;6(6):e21680.
Background
Signal transducer and activator of transcription 3 (STAT3) plays critical roles in neural development and is increasingly recognized as a major mediator of injury response in the nervous system. Cytokines and growth factors are known to phosphorylate STAT3 at tyrosine705 with or without the concomitant phosphorylation at serine727, resulting in the nuclear localization of STAT3 and subsequent transcriptional activation of genes. Recent evidence suggests that STAT3 may control cell function via alternative mechanisms independent of its transcriptional activity. Currently, the involvement of STAT3 mono-phosphorylated at residue serine727 (P-Ser-STAT3) in neurite outgrowth and the underlying mechanism is largely unknown.
Principal Findings
In this study, we investigated the role of nerve growth factor (NGF) induced P-Ser-STAT3 in mediating neurite outgrowth. NGF induced the phosphorylation of residue serine727 but not tyrosine705 of STAT3 in PC12 and primary cortical neuronal cells. In PC12 cells, serine but not tyrosine dominant negative mutant of STAT3 was found to impair NGF induced neurite outgrowth. Unexpectedly, NGF induced P-Ser-STAT3 was localized to the mitochondria but not in the nucleus. Mitochondrial STAT3 was further found to be intimately involved in NGF induced neurite outgrowth and the production of reactive oxygen species (ROS).
Conclusion
Taken together, the findings herein demonstrated a hitherto unrecognized novel transcription independent mechanism whereby the mitochondria localized P-Ser-STAT3 is involved in NGF induced neurite outgrowth.
doi:10.1371/journal.pone.0021680
PMCID: PMC3124549  PMID: 21738764
8.  Direct Quantification of mRNA and miRNA from Cell Lysates Using Reverse Transcription Real Time PCR: A Multidimensional Analysis of the Performance of Reagents and Workflows 
PLoS ONE  2013;8(9):e72463.
Substantial efforts have been devoted to in vitro testing of candidate chemotherapeutics by profiling transcriptional changes across the collection of NCI-60 cell-lines. A work-flow with reagents that enable the direct quantification of RNA of different molecular sizes simultaneously in the same sample without laborious total RNA isolation will invariably increase the throughput and accuracy of the study. MicroRNAs (miRNAs) are known to regulate most cellular functions, acting post-transcriptionally by repressing numerous eukaryotic mRNAs. Recent findings on the remarkable stability of miRNA prompted us to investigate the feasibility of quantifying the expression levels of both mRNA and miRNA directly from cell lysates (cell-to-Ct). Multidimensional analyses of the expressions of mRNA and miRNA across seven NCI-60 cell lines and multiple reagents were conducted to assess the performances of these reagents and workflows for cell-to-Ct measurements using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Quantification of RNA species using lysates prepared from an in-house and one of the commercial reagents demonstrated comparable performance to those prepared by the more laborious and conventional method of using guanidinium-phenol-chloroform. Additionally, miRNA was found to be highly stable in the cell lysates when incubated at room temperature for prolonged period of time and subjected to multiple freeze-thaw cycles. In summary, this study demonstrated significant differences in pre-analytical performance of a variety of commercially available reagents and described a cost-effective reagent useful for rapid, scalable, and high-throughput workflow for the detection of mRNA and miRNA from the same biological sample.
doi:10.1371/journal.pone.0072463
PMCID: PMC3764000  PMID: 24039771
9.  PTEN/Akt Signaling Controls Mitochondrial Respiratory Capacity through 4E-BP1 
PLoS ONE  2012;7(9):e45806.
Akt, a serine/threonine kinase has been shown to stimulate glycolysis in cancer cells but its role in mitochondrial respiration is unknown. Using PTEN-knockout mouse embryonic fibroblasts (MEFPTEN−/−) with hyper-activated Akt as a cell model, we observed a higher respiratory capacity in MEFPTEN−/− compared to the wildtype (MEFWT). The respiratory phenotype observed in MEFPTEN−/− was reproduced in MEFWT by gene silencing of PTEN which substantiated its role in regulating mitochondrial function. The increased activities of the respiratory complexes (RCs) I, III and IV were retained in the same relative proportions as those present in MEFWT, alluding to a possible co-ordinated regulation by PTEN/Akt. Using LY294002 (a PI3K inhibitor) and Akt inhibitor IV, we showed that the regulation of enzyme activities and protein expressions of the RCs was dependent on PI3K/Akt. There was insignificant difference in the protein expressions of mitochondrial transcription factor: peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and its downstream targets, the nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (mtTFA) between MEFPTEN−/− and MEFWT. Similarly, mRNA levels of the same subunits of the RCs detected in Western blots were not significantly different between MEFPTEN−/− and MEFWT suggesting that the regulation by Akt on mitochondrial function was probably not via gene transcription. On the other hand, a decrease of total 4E-BP1 with a higher expression of its phosphorylated form relative to total 4E-BP1 was found in MEFPTEN−/−, which inferred that the regulation of mitochondrial respiratory activities by Akt was in part through this protein translation pathway. Notably, gene silencing of 4E-BP1 up-regulated the protein expressions of all RCs and the action of 4E-BP1 appeared to be specific to these mitochondrial proteins. In conclusion, PTEN inactivation bestowed a bioenergetic advantage to the cells by up-regulating mitochondrial respiratory capacity through the 4E-BP1-mediated protein translation pathway.
doi:10.1371/journal.pone.0045806
PMCID: PMC3458951  PMID: 23049865
10.  Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR 
BMC Molecular Biology  2011;12:18.
Background
Accurate interpretation of quantitative PCR (qPCR) data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli.
Results
In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression.
Conclusion
This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.
doi:10.1186/1471-2199-12-18
PMCID: PMC3110127  PMID: 21513543
11.  Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells 
BMC Genomics  2010;11:75.
Background
Gene regulation at transcript level can provide a good indication of the complex signaling mechanisms underlying physiological and pathological processes. Transcriptomic methods such as microarray and quantitative real-time PCR require stable reference genes for accurate normalization of gene expression. Some but not all studies have shown that housekeeping genes (HGKs), β-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which are routinely used for normalization, may vary significantly depending on the cell/tissue type and experimental conditions. It is currently unclear if these genes are stably expressed in cells undergoing drastic morphological changes during neuronal differentiation. Recent meta-analysis of microarray datasets showed that some but not all of the ribosomal protein genes are stably expressed. To test the hypothesis that some ribosomal protein genes can serve as reference genes for neuronal differentiation, a genome-wide analysis was performed and putative reference genes were identified based on stability of expressions. The stabilities of these potential reference genes were then analyzed by reverse transcription quantitative real-time PCR in six differentiation conditions.
Results
Twenty stably expressed genes, including thirteen ribosomal protein genes, were selected from microarray analysis of the gene expression profiles of GDNF and NGF induced differentiation of PC12 cells. The expression levels of these candidate genes as well as ACTB and GAPDH were further analyzed by reverse transcription quantitative real-time PCR in PC12 cells differentiated with a variety of stimuli including NGF, GDNF, Forskolin, KCl and ROCK inhibitor, Y27632. The performances of these candidate genes as stable reference genes were evaluated with two independent statistical approaches, geNorm and NormFinder.
Conclusions
The ribosomal protein genes, RPL19 and RPL29, were identified as suitable reference genes during neuronal differentiation of PC12 cells, regardless of the type of differentiation conditions. The combination of these two novel reference genes, but not the commonly used HKG, GAPDH, allows robust and accurate normalization of differentially expressed genes during PC12 differentiation.
doi:10.1186/1471-2164-11-75
PMCID: PMC2831847  PMID: 20113474

Results 1-11 (11)