Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("tonnes, M G")
1.  Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase. 
Journal of Clinical Investigation  1986;77(4):1233-1243.
The neutrophil has been implicated as an important mediator of vascular injury, especially after endotoxemia. This study examines neutrophil-mediated injury to human microvascular endothelial cells in vitro. We found that neutrophils stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP), the complement fragment C5a, or lipopolysaccharide (LPS) (1-1,000 ng/ml) alone produced minimal endothelial injury over a 4-h assay. In contrast, neutrophils incubated with endothelial cells in the presence of low concentrations of LPS (1-10 ng/ml) could then be stimulated by FMLP or C5a to produce marked endothelial injury. Injury was maximal at concentrations of 100 ng/ml LPS and 10(-7) M FMLP. Pretreatment of neutrophils with LPS resulted in a similar degree of injury, suggesting that LPS effects were largely on the neutrophil. Endothelial cell injury produced by LPS-exposed, FMLP-stimulated neutrophils had a time course similar to that induced by the addition of purified human neutrophil elastase, and different from that induced by hydrogen peroxide (H2O2). Further, neutrophil-mediated injury was not inhibited by scavengers of a variety of oxygen radical species, and occurred with neutrophils from a patient with chronic granulomatous disease, which produced no H2O2. In contrast, the specific serine elastase inhibitor methoxy-succinyl-alanyl-alanyl-prolyl-valyl-chloromethyl ketone inhibited 63% of the neutrophil-mediated injury and 64% of the neutrophil elastase-induced injury. However, neutrophil-mediated injury was not inhibited significantly by 50% serum, 50% plasma, or purified alpha 1 proteinase inhibitor. These results suggest that, in this system, chemotactic factor-stimulated human neutrophil injury of microvascular endothelial cells is enhanced by small amounts of LPS and may be mediated in large part by the action of neutrophil elastase.
PMCID: PMC424465  PMID: 3485659
2.  Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. 
Journal of Clinical Investigation  1997;99(11):2691-2700.
The presence of mast cells near capillary sprouting sites suggests an association between mast cells and angiogenesis. However, the role of mast cells in blood vessel development remains to be defined. In an attempt to elucidate this relationship, we investigated the effect of human mast cells (HMC-1) and their products on human dermal microvascular endothelial cell (HDMEC) tube formation. Coculture of HMC-1 with HDMEC led to a dose-response increase in the network area of vascular tube growth. Moreover, the extent of neovascularization was enhanced greatly when HMC-1 were degranulated in the presence of HDMEC. Further examination using antagonists to various mast cell products revealed a blunted response (73-88% decrease) in the area of vascular tube formation if specific inhibitors of tryptase were present. Tryptase (3 microg/ml) directly added to HDMEC caused a significant augmentation of capillary growth, which was suppressed by specific tryptase inhibitors. Tryptase also directly induced cell proliferation of HDMEC in a dose-dependent fashion (2 pM-2 nM). Our results suggest that mast cells act at sites of new vessel formation by secreting tryptase, which then functions as a potent and previously unrecognized angiogenic factor.
PMCID: PMC508115  PMID: 9169499
3.  Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. 
Journal of Clinical Investigation  1989;83(2):637-646.
The process of neutrophil adhesion to and migration through the microvascular endothelium, an early event in the induction of the acute inflammatory response, has been attributed to the generation of extravascular chemoattractants. Although both chemotactic peptides and lipid mediators enhance neutrophil adherence in vitro and in vivo, the mechanism(s) involved in the interaction between circulating neutrophils and microvascular endothelial cells is still not completely understood. In a microtiter well adherence assay, the chemotactic peptides, FMLP and C5a, and the lipid mediators, leukotriene B4 (LTB4) and platelet activating factor (PAF), enhanced human neutrophil adherence to cultured human microvascular endothelial cells as well as to human umbilical vein endothelial cells in a dose-dependent manner with a rapid time course. This stimulated adhesive interaction between neutrophils and cultured human endothelial cells was dependent on the expression of the Mac-1, LFA-1, p150,95 glycoprotein family on the neutrophil surface since neutrophils from patients with leukocyte adhesion deficiency, lacking surface expression of the adhesive glycoproteins, exhibited markedly diminished adherence to human endothelial cells in response to stimulation with chemotactic factors compared to normal control neutrophils. All four mediators enhanced expression of the glycoprotein family on the surface of normal neutrophils as determined by flow cytofluorimetry using a monoclonal antibody (TS1/18) to the glycoprotein common beta subunit. In addition, TS1/18 inhibited up to 100% the adherence of normal neutrophils to endothelial cells stimulated by maximal concentrations of FMLP, C5a, LTB4, or PAF. Moreover, HL-60 cells, human promyelocytic leukemia cells, neither increased glycoprotein surface expression nor adherence in response to stimulation. Thus, peptide and lipid mediators of the acute inflammatory response appear to enhance adherence of circulating neutrophils to the microvascular endothelium by a mechanism dependent on expression of the Mac-1, LFA-1, p150,95 glycoprotein family on the neutrophil surface.
PMCID: PMC303725  PMID: 2521491
4.  Neutrophil-endothelial cell interactions. Modulation of neutrophil adhesiveness induced by complement fragments C5a and C5a des arg and formyl-methionyl-leucyl-phenylalanine in vitro. 
Journal of Clinical Investigation  1984;74(5):1581-1592.
Neutrophil adherence to vascular endothelial cells is the initial event in the emigration of neutrophils through blood vessel walls to tissue sites of inflammation; this process is attributed to the generation of extravascular chemotactic factors. To investigate the effect of chemotactic factors on neutrophil adherence to endothelium, we developed a sensitive, reproducible in vitro microtiter adherence assay. Base-line nonstimulated adhesion of human neutrophils to cultured human umbilical vein endothelial cell monolayers was 35.2 +/- 0.9%, which is equivalent to three to four neutrophils per endothelial cell. Addition of either purified complement fragment C5a des arg, or formyl-methionyl-leucyl-phenylalanine (FMLP), in concentrations ranging from 10(-10) to 10(-6) M, increased neutrophil adherence to endothelium in a dose-dependent manner. Purified C5a and C5a des arg were essentially equal in their ability to enhance neutrophil adherence, in contrast to the previously described greater in vitro potency of C5a compared with C5a des arg in stimulating neutrophil chemotaxis and enzyme release. Nonstimulated neutrophils adhered preferentially to human endothelial cells compared with fibroblasts or smooth muscle cells, suggesting that endothelial cells may make a unique contribution to the base-line adhesive interaction. However, chemotactic factors appear to enhance neutrophil adherence to endothelium by exerting an effect primarily on the neutrophil. In the presence of chemotactic factor, neutrophils adhered equally well to different cell types or to protein-coated plastic. Pretreatment of endothelial cells with chemotactic factor for as long as 4 h failed to increase subsequent neutrophil adherence. In contrast, pretreatment of neutrophils with chemotactic factor increased adherence to endothelium. Chemotactic factor-stimulated neutrophil adherence to endothelium occurred rapidly (within 2 min), diminished upon removal of stimulus, but could be rapidly and maximally restimulated upon readdition of the original dose of chemotactic factor. Thus, adherence to endothelium stimulated by chemotactic factor would appear to be a dynamic neutrophil response capable of rapid modulation, possibly important to the ability of neutrophils to adhere to and then migrate through vessel walls to localize at sites of inflammation.
PMCID: PMC425335  PMID: 6501563
5.  Identification of a human neutrophil angiotension II-generating protease as cathepsin G. 
A human neutrophil protease, initially termed neutral peptide-generating protease, has been shown to cleave angiotensin II directly from angiotensinogen and has been identified as leukocyte cathepsin G. When purified neutrophils were disrupted by nitrogen cavitation and fractionated by differential centrifugation, 44 and 24% of the angiotensin II-generating activity was in the lysosomal and undisrupted cell fractions, respectively. Cytochalasin B-treated human neutrophils stimulated with N-formyl-L-methionyl-L-leucyl-L-phenylalanine released beta-glucuronidase, lysozyme, and angiotensin II-generating protease in a dose-dependent fashion, consistent with localization of this protease to the neutrophil granule. Individually purified angiotensin II-generating protease and cathepsin G had similar proteolytic and esterolytic activity for angiotensinogen and N-benzoyl-L-tyrosine ethyl ester on a weight basis, exhibited identical mobilities by SDS-gradient polyacrylamide gel electrophoresis and pH 4.3 disc-gel electrophoresis, and gave precipitin lines of antigenic identity on Ouchterlony analysis with goat antibody to the angiotensin II-generating protease. Thus, the angiotensin II-generating protease of human neutrophils has been identified as cathepsin G on the basis of subcellular localization, substrate specificity, physicochemical characteristics, and antigenic identity.
PMCID: PMC371164  PMID: 6172448

Results 1-5 (5)