Search tips
Search criteria

Results 1-25 (25)

Clipboard (0)

Select a Filter Below

Year of Publication
author:("Tong, guigang")
1.  Complete Genome Sequence of Staphylococcus aureus XN108, an ST239-MRSA-SCCmec III Strain with Intermediate Vancomycin Resistance Isolated in Mainland China 
Genome Announcements  2014;2(4):e00449-14.
ST239-MRSA-SCCmec III (ST239, sequence type 239; MRSA, methicillin-resistant Staphylococcus aureus; SCCmec III, staphylococcal cassette chromosome mec type III) is the most predominant clone of hospital-acquired methicillin-resistant S. aureus in mainland China. We report here the complete genome sequence of XN108, the first vancomycin-intermediate S. aureus strain isolated from a steam-burned patient with a wound infection.
PMCID: PMC4110214  PMID: 25059856
2.  Recombinant Lysostaphin Protects Mice from Methicillin-Resistant Staphylococcus aureus Pneumonia 
BioMed Research International  2014;2014:602185.
The advent of methicillin-resistant Staphylococcus aureus (MRSA) and the frequent and excessive abuse of ventilators have made MRSA pneumonia an inordinate threat to human health. Appropriate antibacterial therapies are crucial, including the use of lysostaphin as an alternative to antibiotics. To explore the potential use of lysostaphin as a therapeutic agent for MRSA pneumonia, mice were intranasally infected with MRSA and then treated with recombinant lysostaphin (rLys; 45 mg/kg in the high-dose group and 1 mg/kg in the low-dose group) (0.33 mg/mL, 15 mg/mL), vancomycin (120 mg/kg) (40 mg/mL), or phosphate-buffered saline (PBS, negative control) 4 h after infection. Therapeutic efficacy was assessed by mouse survival, lung histopathology, bacterial density in the lungs, bodyweight, lung weight, temperature, white blood cells counts, lymphocytes counts, granulocytes counts, and monocytes counts. The mice treated with rLys showed lower mortality, less lung parenchymal damage, and lower bacterial density at metastatic tissue sites than mice treated with PBS or vancomycin. The overall mortality was 100%, 60%, 40%, and 60% for the control, vancomycin, high-dose rLys, and low-dose rLys groups, respectively. These findings indicate that, as a therapeutic agent for MRSA pneumonia, lysostaphin exerts profound protective effects in mice against the morbidity and mortality associated with S. aureus pneumonia.
PMCID: PMC4124205  PMID: 25136599
3.  Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates 
BMC Microbiology  2014;14:181.
With the use of broad-spectrum antibiotics, immunosuppressive drugs, and glucocorticoids, multidrug-resistant Acinetobacter baumannii (MDR-AB) has become a major nosocomial pathogen species. The recent renaissance of bacteriophage therapy may provide new treatment strategies for combatting drug-resistant bacterial infections. In this study, we isolated a lytic bacteriophage vB_AbaM-IME-AB2 has a short latent period and a small burst size, which clear its host’s suspension quickly, was selected for characterization and a complete genomic comparative study.
The isolated bacteriophage vB_AbaM-IME-AB2 has an icosahedral head and displays morphology resembling Myoviridae family. Gel separation assays showed that the phage particle contains at least nine protein bands with molecular weights ranging 15–100 kDa. vB_AbaM-IME-AB2 could adsorb its host cells in 9 min with an adsorption rate more than 99% and showed a short latent period (20 min) and a small burst size (62 pfu/cell). It could form clear plaques in the double-layer assay and clear its host’s suspension in just 4 hours. Whole genome of vB_AbaM-IME-AB2 was sequenced and annotated and the results showed that its genome is a double-stranded DNA molecule consisting of 43,665 nucleotides. The genome has a G + C content of 37.5% and 82 putative coding sequences (CDSs). We compared the characteristics and complete genome sequence of all known Acinetobacter baumannii bacteriophages. There are only three that have been sequenced Acinetobacter baumannii phages AB1, AP22, and phiAC-1, which have a relatively high similarity and own a coverage of 65%, 50%, 8% respectively when compared with our phage vB_AbaM-IME-AB2. A nucleotide alignment of the four Acinetobacter baumannii phages showed that some CDSs are similar, with no significant rearrangements observed. Yet some sections of these strains of phage are nonhomologous.
vB_AbaM-IME-AB2 was a novel and unique A. baumannii bacteriophage. These findings suggest a common ancestry and microbial diversity and evolution. A clear understanding of its characteristics and genes is conducive to the treatment of multidrug-resistant A. baumannii in the future.
PMCID: PMC4094691  PMID: 24996449
Acinetobacter baumannii; Bacteriophage; Characteristics; Genome
4.  An Efficient Strategy of Screening for Pathogens in Wild-Caught Ticks and Mosquitoes by Reusing Small RNA Deep Sequencing Data 
PLoS ONE  2014;9(3):e90831.
This paper explored our hypothesis that sRNA (18∼30 bp) deep sequencing technique can be used as an efficient strategy to identify microorganisms other than viruses, such as prokaryotic and eukaryotic pathogens. In the study, the clean reads derived from the sRNA deep sequencing data of wild-caught ticks and mosquitoes were compared against the NCBI nucleotide collection (non-redundant nt database) using Blastn. The blast results were then analyzed with in-house Python scripts. An empirical formula was proposed to identify the putative pathogens. Results showed that not only viruses but also prokaryotic and eukaryotic species of interest can be screened out and were subsequently confirmed with experiments. Specially, a novel Rickettsia spp. was indicated to exist in Haemaphysalis longicornis ticks collected in Beijing. Our study demonstrated the reuse of sRNA deep sequencing data would have the potential to trace the origin of pathogens or discover novel agents of emerging/re-emerging infectious diseases.
PMCID: PMC3949703  PMID: 24618575
5.  Genome-Wide Analysis of Codon Usage and Influencing Factors in Chikungunya Viruses 
PLoS ONE  2014;9(3):e90905.
Chikungunya virus (CHIKV) is an arthropod-borne virus of the family Togaviridae that is transmitted to humans by Aedes spp. mosquitoes. Its genome comprises a 12 kb single-strand positive-sense RNA. In the present study, we report the patterns of synonymous codon usage in 141 CHIKV genomes by calculating several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis showed that the preferred synonymous codons were G/C and A-ended. A comparative analysis of RSCU between CHIKV and its hosts showed that codon usage patterns of CHIKV are a mixture of coincidence and antagonism. Similarity index analysis showed that the overall codon usage patterns of CHIKV have been strongly influenced by Pan troglodytes and Aedes albopictus during evolution. The overall codon usage bias was low in CHIKV genomes, as inferred from the analysis of effective number of codons (ENC) and codon adaptation index (CAI). Our data suggested that although mutation pressure dominates codon usage in CHIKV, patterns of codon usage in CHIKV are also under the influence of natural selection from its hosts and geography. To the best of our knowledge, this is first report describing codon usage analysis in CHIKV genomes. The findings from this study are expected to increase our understanding of factors involved in viral evolution, and fitness towards hosts and the environment.
PMCID: PMC3942501  PMID: 24595095
6.  Construction of a Chimeric Secretory IgA and Its Neutralization Activity against Avian Influenza Virus H5N1 
Journal of Immunology Research  2014;2014:394127.
Secretory immunoglobulin A (SIgA) acts as the first line of defense against respiratory pathogens. In this assay, the variable regions of heavy chain (VH) and Light chain (VL) genes from a mouse monoclonal antibody against H5N1 were cloned and fused with human IgA constant regions. The full-length chimeric light and heavy chains were inserted into a eukaryotic expressing vector and then transfected into CHO/dhfr-cells. The chimeric monomeric IgA antibody expression was confirmed by using ELISA, SDS-PAGE, and Western blot. In order to obtain a dimeric secretory IgA, another two expressing plasmids, namely, pcDNA4/His A-IgJ and pcDNA4/His A-SC, were cotransfected into the CHO/dhfr-cells. The expression of dimeric SIgA was confirmed by using ELISA assay and native gel electrophoresis. In microneutralization assay on 96-well immunoplate, the chimeric SIgA showed neutralization activity against H5N1 virus on MDCK cells and the titer was determined to be 1 : 64. On preadministrating intranasally, the chimeric SIgA could prevent mice from lethal attack by using A/Vietnam/1194/04 H5N1 with a survival rate of 80%. So we concluded that the constructed recombinant chimeric SIgA has a neutralization capability targeting avian influenza virus H5N1 infection in vitro and in vivo.
PMCID: PMC3987799  PMID: 24741594
7.  Scrutinizing Virus Genome Termini by High-Throughput Sequencing 
PLoS ONE  2014;9(1):e85806.
Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS) have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs) found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell.
PMCID: PMC3896407  PMID: 24465717
8.  Characterization of Enterococcus faecalis Phage IME-EF1 and Its Endolysin 
PLoS ONE  2013;8(11):e80435.
Enterococcus faecalis is increasingly becoming an important nosocomial infection opportunistic pathogen. E. faecalis can easily obtain drug resistance, making it difficult to be controlled in clinical settings. Using bacteriophage as an alternative treatment to drug-resistant bacteria has been revitalized recently, especially for fighting drug-resistant bacteria. In this research, an E. faecalis bacteriophage named IME-EF1 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that the isolated IME-EF1 belong to the Siphoviridae family, and has a linear double-stranded DNA genome consisting of 57,081 nucleotides. The IME-EF1 genome has a 40.04% G+C content and contains 98 putative coding sequences. In addition, IME-EF1 has an isometric head with a width of 35 nm to 60 nm and length of 75 nm to 90 nm, as well as morphology resembling a tadpole. IME-EF1 can adsorb to its host cells within 9 min, with an absorbance rate more than 99% and a latent period time of 25 min. The endolysin of IME-EF1 contains a CHAP domain in its N-terminal and has a wider bactericidal spectrum than its parental bacteriophage, including 2 strains of vancomycin-resistant E. faecalis. When administrated intraperitoneally, one dose of IME-EF1 or its endolysin can reduce bacterial count in the blood and protected the mice from a lethal challenge of E. faecalis, with a survival rate of 60% or 80%, respectively. Although bacteriophage could rescue mice from bacterial challenge, to the best of our knowledge, this study further supports the potential function of bacteriophage in dealing with E. faecalis infection in vivo. The results also indicated that the newly isolated bacteriophage IME-EF1 enriched the arsenal library of lytic E. faecalis bacteriophages and presented another choice for phage therapy in the future.
PMCID: PMC3827423  PMID: 24236180
9.  Correction: Comparative Genomics Analysis of Mycobacterium ulcerans for the Identification of Putative Essential Genes and Therapeutic Candidates 
PLoS ONE  2013;8(9):10.1371/annotation/8ce51727-91b0-463f-9b4c-768aab0a230a.
PMCID: PMC3776887
10.  Complete Genome Sequence of Avian Influenza Virus A/chicken/Jiangsu/1001/2013(H5N2), Demonstrating Continuous Reassortance of H5N2 in China 
Genome Announcements  2013;1(4):e00469-13.
Avian influenza virus A/chicken/Jiangsu/1001/2013(H5N2) was identified from a healthy chicken in an eastern China poultry market. Whole-genome analysis demonstrated that the H5N2 virus originated from a reassortance between a previous A/chicken/Hebei/1102/2010(H5N2) virus and an endemic H5N1 virus. The results indicated that continuing reassortance of H5N2 has been occurring in domestic poultry of China.
PMCID: PMC3715666  PMID: 23868124
11.  Genome Sequence of Borrelia garinii Strain NMJW1, Isolated from China 
Journal of Bacteriology  2012;194(23):6660-6661.
We announce the draft genome sequence of Borrelia garinii strain NMJW1, isolated from Ixodes persulcatus in northeastern China. The 902,789-bp linear chromosome (28.4% GC content) contains 813 open reading frames, 33 tRNAs, and 4 complete rRNAs.
PMCID: PMC3497544  PMID: 23144406
12.  Complete Genome Sequence of IME15, the First T7-Like Bacteriophage Lytic to Pan-Antibiotic-Resistant Stenotrophomonas maltophilia 
Journal of Virology  2012;86(24):13839-13840.
T7-like bacteriophages are a class of virulent bacteriophages which have a clearer genetic background and smaller genomes than other phages. In addition, it grows faster and is easier to culture than other phages. At present, the numbers of available T7-like bacteriophage genomes and Stenotrophomonas maltophilia genomes are small, and IME15 is the first T7-like virulent Stenotrophomonas phage whose sequence has been reported. It shows effective lysis of S. maltophilia. Here we announce its complete genome, and major findings from its annotation are described.
PMCID: PMC3503069  PMID: 23166248
13.  Complete Genome Sequence of IME11, a New N4-Like Bacteriophage 
Journal of Virology  2012;86(24):13861.
N4-like bacteriophages are a class of virulent Podoviridae phages for which few genome sequences are present in GenBank. IME11, a novel lytic Escherichia bacteriophage with a wide host range, was isolated, and the whole genome was sequenced. It has a circular double-stranded DNA genome of 72,570 bp. Genomic analysis showed that it resembles another Escherichia phage, vB_EcoP_G7C. Here we announce its complete genome and major findings from its annotation.
PMCID: PMC3503130  PMID: 23166261
14.  Complete Genome Sequence of Bartonella quintana, a Bacterium Isolated from Rhesus Macaques 
Journal of Bacteriology  2012;194(22):6347.
Bartonella quintana is a re-emerging pathogen and the causative agent of a broad spectrum of disease manifestations in humans. The present study reports the complete genome of B. quintana strain RM_11, which was isolated from rhesus macaques.
PMCID: PMC3486344  PMID: 23105078
15.  Complete Genome Sequence of IME13, a Stenotrophomonas maltophilia Bacteriophage with Large Burst Size and Unique Plaque Polymorphism 
Journal of Virology  2012;86(20):11392-11393.
Stenotrophomonas maltophilia bacteriophage IME13 is a virulent phage with a large burst size, exceeding 3,000, much larger than that of any other stenotrophomonas phage reported before. It showed effective lysis of Stenotrophomonas maltophilia. Additionally, the phage IME13 developed at least three obviously different sizes of plaques when a single plaque was picked out and inoculated on a double-layer Luria broth agar plate with its host. Here we announce its complete genome and describe major findings from its annotation.
PMCID: PMC3457173  PMID: 22997416
16.  Comparative Genomics Analysis of Mycobacterium ulcerans for the Identification of Putative Essential Genes and Therapeutic Candidates 
PLoS ONE  2012;7(8):e43080.
Mycobacterium ulcerans, the causative agent of Buruli ulcer, is the third most common mycobacterial disease after tuberculosis and leprosy. The present treatment options are limited and emergence of treatment resistant isolates represents a serious concern and a need for better therapeutics. Conventional drug discovery methods are time consuming and labor-intensive. Unfortunately, the slow growing nature of M. ulcerans in experimental conditions is also a barrier for drug discovery and development. In contrast, recent advancements in complete genome sequencing, in combination with cheminformatics and computational biology, represent an attractive alternative approach for the identification of therapeutic candidates worthy of experimental research. A computational, comparative genomics workflow was defined for the identification of novel therapeutic candidates against M. ulcerans, with the aim that a selected target should be essential to the pathogen, and have no homology in the human host. Initially, a total of 424 genes were predicted as essential from the M. ulcerans genome, via homology searching of essential genome content from 20 different bacteria. Metabolic pathway analysis showed that the most essential genes are associated with carbohydrate and amino acid metabolism. Among these, 236 proteins were identified as non-host and essential, and could serve as potential drug and vaccine candidates. Several drug target prioritization parameters including druggability were also calculated. Enzymes from several pathways are discussed as potential drug targets, including those from cell wall synthesis, thiamine biosynthesis, protein biosynthesis, and histidine biosynthesis. It is expected that our data will facilitate selection of M. ulcerans proteins for successful entry into drug design pipelines.
PMCID: PMC3418265  PMID: 22912793
17.  Avian influenza virus H5N1 induces rapid interferon-beta production but shows more potent inhibition to retinoic acid-inducible gene I expression than H1N1 in vitro 
Virology Journal  2012;9:145.
The mechanisms through which the avian influenza virus H5N1 modulate the host’s innate immune defense during invasion, remains incompletely understood. RIG-I as a pattern recognition receptor plays an important role in mediating innate immune response induced by influenza virus. So, modulating RIG-I might be adopted as a strategy by influenza virus to antagonize the host’s innate immune defense.
Here we chose an avian influenza virus A/tree sparrow/Henan/1/04 (H5N1) directly isolated from a free-living tree sparrow in Mainland China which is amplified in egg allantoic cavity, and researched its interferon induction and manipulation of RIG-I expression compared with influenza virus A/WSN/1933(H1N1), a well characterized mouse adapted strain, in human lung epithelial A549 cells and human embryonic kidney 293T cells.
Although the avian influenza virus H5N1 infection initiated a rapid IFN-beta production early on, it eventually presented a more potent inhibition to IFN-beta production than H1N1. Correspondingly, the H5N1 infection induced low level expression of endogenous RIG-I, an Interferon Stimulating Gene (ISG), and showed more potent inhibition to the expression of endogenous RIG-I triggered by exogenous interferon than H1N1.
Manipulating endogenous RIG-I expression might constitute one of the mechanisms through which avian influenza virus H5N1 control the host’s innate immune response during infection.
PMCID: PMC3464129  PMID: 22862800
Avian influenza virus H5N1; Interferon-beta; RIG-I
18.  Complete Genome Sequence of Rickettsia heilongjiangensis, an Emerging Tick-Transmitted Human Pathogen 
Journal of Bacteriology  2011;193(19):5564-5565.
Rickettsia heilongjiangensis is an emerging tick-transmitted human pathogen causing far-Eastern spotted fever. Here we report the complete sequence and the main features of the genome of R. heilongjiangensis (strain 054).
PMCID: PMC3187448  PMID: 21914880
19.  Computational Identification and Modeling of Crosstalk between Phosphorylation, O-β-glycosylation and Methylation of FoxO3 and Implications for Cancer Therapeutics 
FoxO3 is a member of the forkhead class of transcription factors and plays a major role in the regulation of diverse cellular processes, including cell cycle arrest, DNA repair, and protection from stress stimuli by detoxification of reactive oxygen species. In addition, FoxO3 is a tumor suppressor and has been considered as a novel target for cancer therapeutics. Phosphorylation of FoxO3 via the AKT, IKK, and ERK pathways leads to deregulation, cytoplasmic retention, degradation of FoxO3 and favors tumor progression. Identification of the amino acid residues that are the target of different posttranslational modifications (PTMs) provides a foundation for understanding the molecular mechanisms of FoxO3 modifications and associated outcomes. In addition to phosphorylation, serine and threonine residues of several proteins are regulated by a unique type of PTM known as O-β-glycosylation, which serves as a functional switch. We sought to investigate the crosstalk of different PTMs on the FoxO3 which leads to the onset/progression of various cancers and that could also potentially be targeted as a therapeutic point of intervention. A computational workflow and set of selection parameters have been defined for the identification of target sites and crosstalk between different PTMs. We identified phosphorylation, O-β-GlcNAc modification, and Yin Yang sites on Ser/Thr residues, and propose a potential novel mechanism of crosstalk between these PTMs. Furthermore, methylation potential of human FoxO3 at arginine and lysine residues and crosstalk between methylation and phosphorylation have also been described. Our findings may facilitate the study of therapeutic strategies targeting posttranslational events.
PMCID: PMC3317383  PMID: 22489133
FoxO3; FoxO; in silico; posttranslational modifications; phosphorylation; O-β-glycosylation; methylation; cancer; Yin Yang sites
20.  Discovery of DNA Viruses in Wild-Caught Mosquitoes Using Small RNA High throughput Sequencing 
PLoS ONE  2011;6(9):e24758.
Mosquito-borne infectious diseases pose a severe threat to public health in many areas of the world. Current methods for pathogen detection and surveillance are usually dependent on prior knowledge of the etiologic agents involved. Hence, efficient approaches are required for screening wild mosquito populations to detect known and unknown pathogens.
Methodology/principal findings
In this study, we explored the use of Next Generation Sequencing to identify viral agents in wild-caught mosquitoes. We extracted total RNA from different mosquito species from South China. Small 18–30 bp length RNA molecules were purified, reverse-transcribed into cDNA and sequenced using Illumina GAIIx instrumentation. Bioinformatic analyses to identify putative viral agents were conducted and the results confirmed by PCR. We identified a non-enveloped single-stranded DNA densovirus in the wild-caught Culex pipiens molestus mosquitoes. The majority of the viral transcripts (.>80% of the region) were covered by the small viral RNAs, with a few peaks of very high coverage obtained. The +/− strand sequence ratio of the small RNAs was approximately 7∶1, indicating that the molecules were mainly derived from the viral RNA transcripts. The small viral RNAs overlapped, enabling contig assembly of the viral genome sequence. We identified some small RNAs in the reverse repeat regions of the viral 5′- and 3′ -untranslated regions where no transcripts were expected.
Our results demonstrate for the first time that high throughput sequencing of small RNA is feasible for identifying viral agents in wild-caught mosquitoes. Our results show that it is possible to detect DNA viruses by sequencing the small RNAs obtained from insects, although the underlying mechanism of small viral RNA biogenesis is unclear. Our data and those of other researchers show that high throughput small RNA sequencing can be used for pathogen surveillance in wild mosquito vectors.
PMCID: PMC3176773  PMID: 21949749
21.  High level soluble expression, one-step purification and characterization of HIV-1 p24 protein 
Virology Journal  2011;8:316.
P24 protein is the major core protein of HIV virus particle and has been suggested as a specific target for antiviral strategies. Recombinant p24 protein with natural antigenic activity would be useful for various studies, such as diagnostic reagents and multi-component HIV vaccine development. The aim of this study was to express and purify the p24 protein in soluble form in E.coli.
According to the sequence of the p24 gene, a pair of primers was designed, and the target sequence of 700 bp was amplified using PCR. The PCR product was cloned into pQE30 vector, generating the recombinant plasmid pQE30-p24. SDS-PAGE analysis showed that the His-tagged recombinant p24 protein was highly expressed in soluble form after induction in E. coli strain BL21. The recombinant protein was purified by nickel affinity chromatography and used to react with HIV infected sera. The results showed that the recombinant p24 protein could specifically react with the HIV infected sera. To study the immunogenicity of this soluble recombinant p24 protein, it was used to immunize mice for the preparation of polyclonal antibody. Subsequent ELISA and Western-Blot analysis demonstrated that the p24 protein had proper immunogenicity in inducing mice to produce HIV p24 specific antibodies.
In this work, we report the high level soluble expression of HIV-1 p24 protein in E. coli. This soluble recombinant p24 protein specifically react with HIV infected sera and elicit HIV p24 specific antibodies in mice, indicating this soluble recombinant p24 protein could be a promising reagent for HIV diagnosis.
PMCID: PMC3132166  PMID: 21693071
22.  Sequence characteristics of T4-like bacteriophage IME08 benome termini revealed by high throughput sequencing 
Virology Journal  2011;8:194.
T4 phage is a model species that has contributed broadly to our understanding of molecular biology. T4 DNA replication and packaging share various mechanisms with human double-stranded DNA viruses such as herpes virus. The literature indicates that T4-like phage genomes have permuted terminal sequences, and are generated by a DNA terminase in a sequence-independent manner;
genomic DNA of T4-like bacteriophage IME08 was subjected to high throughput sequencing, and the read sequences with extraordinarily high occurrences were analyzed;
we demonstrate that both the 5' and 3' termini of the IME08 genome starts with base G or A. The presence of a consensus sequence TTGGA|G around the breakpoint of the high frequency read sequences suggests that the terminase cuts the branched pre-genome in a sequence-preferred manner. Our analysis also shows that terminal cleavage is asymmetric, with one end cut at a consensus sequence, and the other end generated randomly. The sequence-preferred cleavage may produce sticky-ends, but with each end being packaged with different efficiencies;
this study illustrates how high throughput sequencing can be used to probe replication and packaging mechanisms in bacteriophages and/or viruses.
PMCID: PMC3105952  PMID: 21524290
T4-like bacteriophage; terminase; high throughput sequencing
23.  Homology modeling, comparative genomics and functional annotation of Mycoplasma genitalium hypothetical protein MG_237 
Bioinformation  2011;7(6):299-303.
Mycoplasma genitalium is a human pathogen associated with several sexually transmitted diseases. The complete genome of M. genitalium G37 has been sequenced and provides an opportunity to understand the pathogenesis and identification of therapeutic targets. However, complete understanding of bacterial function requires proper annotation of its proteins. The genome of M. genitalium consists of 475 proteins. Among these, 94 are without any known function and are described as ‘hypothetical proteins’. We selected MG_237 for sequence and structural analysis using a bioinformatics approach. Primary and secondary structure analysis suggested that MG_237 is a hydrophilic protein containing a significant proportion of alpha helices, and subcellular localization predictions suggested it is a cytoplasmic protein. Homology modeling was used to define the three-dimensional (3D) structure of MG-237. A search for templates revealed that MG_237 shares 63% homology to a hypothetical protein of Mycoplasma pneumoniae, indicating this protein is evolutionary conserved. The refined 3D model was generated using (PS)2­v2 sever that incorporates MODELLER. Several quality assessment and validation parameters were computed and indicated that the homology model is reliable. Furthermore, comparative genomics analysis suggested MG_237 as non-homologous protein and involved in four different metabolic pathways. Experimental validation will provide more insight into the actual function of this protein in microbial pathways.
PMCID: PMC3280499  PMID: 22355225
Mycoplasma genitalium; homology modelling; hypothetical proteins; comparative genomics; metabolic pathways
24.  Avian influenza A (H9N2): computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population 
Virology Journal  2010;7:319.
H9N2 avian influenza A viruses have become panzootic in Eurasia over the last decade and have caused several human infections in Asia since 1998. To study their evolution and zoonotic potential, we conducted an in silico analysis of H9N2 viruses that have infected humans between 1997 and 2009 and identified potential novel reassortments.
A total of 22 hemagglutinin (HA) and neuraminidase (NA) nucleotide and deduced amino acid sequences were retrieved from the NCBI flu database. It was identified that mature peptide sequences of HA genes isolated from humans in 2009 had glutamine at position 226 (H3) of the receptor binding site, indicating a preference to bind to the human α (2-6) sialic acid receptors, which is different from previously isolated viruses and studies where the presence of leucine at the same position contributes to preference for human receptors and presence of glutamine towards avian receptors. Similarly, strains isolated in 2009 possessed new motif R-S-N-R in spite of typical R-S-S-R at the cleavage site of HA, which isn't reported before for H9N2 cases in humans. Other changes involved loss, addition, and variations in potential glycosylation sites as well as in predicted epitopes. The results of phylogenetic analysis indicated that HA and NA gene segments of H9N2 including those from current and proposed vaccine strains belong to two different Eurasian phylogenetic lineages confirming possible genetic reassortments.
These findings support the continuous evolution of avian H9N2 viruses towards human as host and are in favor of effective surveillance and better characterization studies to address this issue.
PMCID: PMC2994543  PMID: 21078137
25.  Rapid Assembly of Multiple-Exon cDNA Directly from Genomic DNA 
PLoS ONE  2007;2(11):e1179.
Polymerase chain reaction (PCR) is extensively applied in gene cloning. But due to the existence of introns, low copy number of particular genes and high complexity of the eukaryotic genome, it is usually impossible to amplify and clone a gene as a full-length sequence directly from the genome by ordinary PCR based techniques. Cloning of cDNA instead of genomic DNA involves multiple steps: harvest of tissues that express the gene of interest, RNA isolation, cDNA synthesis (reverse transcription), and PCR amplification. To simplify the cloning procedures and avoid the problems caused by ubiquitously distributed durable RNases, we have developed a novel strategy allowing the cloning of any cDNA or open reading frame (ORF) with wild type sequence in any spliced form from a single genomic DNA preparation.
Our “Genomic DNA Splicing” technique contains the following steps: first, all exons of the gene are amplified from a genomic DNA preparation, using software-optimized, highly efficient primers residing in flanking introns. Next, the tissue-specific exon sequences are assembled into one full-length sequence by overlapping PCR with deliberately designed primers located at the splicing sites. Finally, software-optimized outmost primers are exploited for efficient amplification of the assembled full-length products.
The “Genomic DNA Splicing” protocol avoids RNA preparation and reverse transcription steps, and the entire assembly process can be finished within hours. Since genomic DNA is more stable than RNA, it may be a more practical cloning strategy for many genes, especially the ones that are very large and difficult to generate a full length cDNA using oligo-dT primed reverse transcription. With this technique, we successfully cloned the full-length wild type coding sequence of human polymeric immunoglobulin receptor, which is 2295 bp in length and composed of 10 exons.
PMCID: PMC2048664  PMID: 18000550

Results 1-25 (25)