PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Functional Diversity of Carbohydrate-Active Enzymes Enabling a Bacterium to Ferment Plant Biomass 
PLoS Genetics  2014;10(11):e1004773.
Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.
Author Summary
Plant-fermenting bacteria are important for the global carbon cycle, human nutrition, and industrial production of renewable fuels and commodities from cellulosic biomass. Plants are primarily composed of heterogeneous polysaccharides, requiring plant-degrading microbes to encode many carbohydrate-active enzymes (CAZymes) to cleave different sugar linkages. Here we develop a broadly applicable method to study how microbes catabolize plant biomass by determining the combination of CAZymes that depolymerize each polysaccharide into sugars, how the cell alters global mRNA expression, and the efficiency with which each polysaccharide is metabolized. We apply this method to investigate how Clostridium phytofermentans, a bacterium encoding 171 CAZymes, ferments polysaccharides. We assimilate our results into a genetic model of how this bacterium metabolizes plant biomass and discuss how these results further our understanding of microbial plant fermentation.
doi:10.1371/journal.pgen.1004773
PMCID: PMC4230839  PMID: 25393313
2.  Proteome-wide systems analysis of a cellulosic biofuel-producing microbe 
We apply mass spectrometry-based ReDi proteomics to quantify the Clostridium phytofermentans proteome during fermentation of cellulosic substrates. ReDi proteomics gives accurate, low-cost quantification of an extra and intracellular microbial proteome. When combined with physiological measurements, these methods form a general systems biology strategy to evaluate the efficiency of cellulosic bioconversion and to identify enzyme targets to engineer for improving this process.C. phytofermentans expressed more than 100 carbohydrate-active enzymes, of which distinct subsets were upregulated on cellulose and hemicellulose. Numerous extracellular enzymes cleave insoluble plant polysaccharides into oligosaccharides, which are transported into the cell to be further degraded by intracellular carbohydratases. Sugars are catabolized by EMP glycolysis incorporating alternative glycolytic enzymes to maximize the ATP yield of anaerobic metabolism.During cellulosic fermentation, cells adhered to the substrate and altered metabolic processes such as upregulation of tryptophan and nicotinamide synthesis proteins and repression of proteins for fatty acid metabolism and cell motility. These diverse metabolic changes highlight how a systems approach can identify novel ways to optimize cellulosic fermentation.
Cellulose is the world's most abundant renewable, biological energy source (Leschine, 1995). Microbial fermentation of cellulosic biomass could sustainably provide enough ethanol for 65% of US ground transportation fuel at current levels (Somerville, 2006). However, cellulose in plant biomass is packaged into a crystalline matrix, making biomass deconstruction a key roadblock to using it as a feedstock (Houghton et al, 2006). A promising strategy to overcome biomass recalcitrance is consolidated bioprocessing (Lynd et al, 2002), which uses microbes such as Clostridium phytofermentans to both secrete enzymes to depolymerize biomass and then ferment the resulting hexose and pentose sugars to a biofuel such as ethanol. The C. phytofermentans genome encodes 161 carbohydrate-active enzymes (CAZy) including 108 glycoside hydrolases spread across 39 families (Cantarel et al, 2009), highlighting the elaborate set of enzymes needed to breakdown different cellulosic polysaccharides. Faced with the complexity of metabolizing biomass, systems biology strategies are needed to comprehensively identify which cellulolytic and metabolic enzymes are used to ferment different cellulosic substrates.
This study presents a systems-level analysis of how C. phytofermentans ferments different cellulosic substrates that incorporates quantitative mass spectrometry-based proteomics of over 2500 proteins. Protein concentrations within each carbon source treatment were calculated by machine learning-supported spectral counting (Absolute Protein EXpression, APEX) (Lu et al, 2007). Protein levels on hemicellulose and cellulose relative to glucose were determined using reductive methylation (Hsu et al, 2003; Boersema et al, 2009), here called ReDi labeling, to chemically incorporate hydrogen or deuterium isotopes at lysines and N-terminal amines of tryptic peptides. We show that ReDi proteomics gives accurate, low-cost quantification of a microbial proteome and can be used to discern extracellular proteins. Further, we combine these quantitative proteomics with detailed measurements of growth, biomass consumption, fermentation product analyses, and electron microscopy. Together, these methods form a general strategy to evaluate the efficiency of cellulosic bioconversion and to identify enzyme targets to engineer for improving this process (Figure 1).
We found that fermentation of cellulosic substrates by C. phytofermentans involves secretion of numerous CAZy as well as proteins for binding of extracellular solutes, proteolysis, and motility. The most highly expressed protein in the proteome is a secreted protein that appears to compose a surface layer to support the cell and anchor cell surface proteins, including some enzymes for plant degradation. Once the secreted CAZy cleave insoluble plant polysaccharides into oligosaccharides, they are taken into the cell to be further degraded by intracellular CAZy, enabling more efficient sugar transport, conserving energy by phosphorolytic cleavage, and ensuring the sugar monomers were not available to competing microbes. Sugars are catabolized by EMP glycolysis incorporating reversible, PPi-dependent glycolytic enzymes, and pyruvate ferredoxin oxidoreductase. The genome encodes seven alcohol dehydrogenases, among which two iron-dependent enzymes are highly expressed and likely facilitate the high ethanol yields. Growth on cellulose also resulted in indirect changes such as increased tryptophan and nicotinamide synthesis and repression of fatty acid synthesis. We distilled the data into a model showing the highly expressed enzymes enabling efficient cellulosic fermentation by C. phytofermentans (Figure 7). Collectively, these data help understand how bacteria recycle plant biomass works towards enabling the use of plant biomass as a low-cost chemical feedstock.
Fermentation of plant biomass by microbes like Clostridium phytofermentans recycles carbon globally and can make biofuels from inedible feedstocks. We analyzed C. phytofermentans fermenting cellulosic substrates by integrating quantitative mass spectrometry of more than 2500 proteins with measurements of growth, enzyme activities, fermentation products, and electron microscopy. Absolute protein concentrations were estimated using Absolute Protein EXpression (APEX); relative changes between treatments were quantified with chemical stable isotope labeling by reductive dimethylation (ReDi). We identified the different combinations of carbohydratases used to degrade cellulose and hemicellulose, many of which were secreted based on quantification of supernatant proteins, as well as the repertoires of glycolytic enzymes and alcohol dehydrogenases (ADHs) enabling ethanol production at near maximal yields. Growth on cellulose also resulted in diverse changes such as increased expression of tryptophan synthesis proteins and repression of proteins for fatty acid metabolism and cell motility. This study gives a systems-level understanding of how this microbe ferments biomass and provides a rational, empirical basis to identify engineering targets for industrial cellulosic fermentation.
doi:10.1038/msb.2010.116
PMCID: PMC3049413  PMID: 21245846
bioenergy; clostridium; proteomics
3.  Genetic Manipulation of Prochlorococcus Strain MIT9313: Green Fluorescent Protein Expression from an RSF1010 Plasmid and Tn5 Transpositionâ–ż  
Applied and Environmental Microbiology  2006;72(12):7607-7613.
Prochlorococcus is the smallest oxygenic phototroph yet described. It numerically dominates the phytoplankton community in the mid-latitude oceanic gyres, where it has an important role in the global carbon cycle. The complete genomes of several Prochlorococcus strains have been sequenced, revealing that nearly half of the genes in each genome are of unknown function. Genetic methods, such as reporter gene assays and tagged mutagenesis, are critical to unveiling the functions of these genes. Here, we describe conditions for the transfer of plasmid DNA into Prochlorococcus strain MIT9313 by interspecific conjugation with Escherichia coli. Following conjugation, E. coli bacteria were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus strain MIT9313. When this plasmid was modified to contain green fluorescent protein, we detected its expression in Prochlorococcus by Western blotting and cellular fluorescence. Further, we applied these conjugation methods to show that a mini-Tn5 transposon will transpose in vivo in Prochlorococcus. These genetic advances provide a basis for future genetic studies with Prochlorococcus, a microbe of ecological importance in the world's oceans.
doi:10.1128/AEM.02034-06
PMCID: PMC1694220  PMID: 17041154
4.  Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability 
Nitrogen (N) often limits biological productivity in the oceanic gyres where Prochlorococcus is the most abundant photosynthetic organism. The Prochlorococcus community is composed of strains, such as MED4 and MIT9313, that have different N utilization capabilities and that belong to ecotypes with different depth distributions. An interstrain comparison of how Prochlorococcus responds to changes in ambient nitrogen is thus central to understanding its ecology. We quantified changes in MED4 and MIT9313 global mRNA expression, chlorophyll fluorescence, and photosystem II photochemical efficiency (Fv/Fm) along a time series of increasing N starvation. In addition, the global expression of both strains growing in ammonium-replete medium was compared to expression during growth on alternative N sources. There were interstrain similarities in N regulation such as the activation of a putative NtcA regulon during N stress. There were also important differences between the strains such as in the expression patterns of carbon metabolism genes, suggesting that the two strains integrate N and C metabolism in fundamentally different ways.
doi:10.1038/msb4100087
PMCID: PMC1682016  PMID: 17016519
cyanobacteria; interstrain; nitrogen; Prochlorococcus; transcription
5.  Optimized in situ construction of oligomers on an array surface 
Nucleic Acids Research  2002;30(20):e107.
Oligonucleotide arrays are powerful tools to study changes in gene expression for whole genomes. These arrays can be synthesized by adapting photolithographic techniques used in microelectronics. Using this method, oligonucleotides are built base by base directly on the array surface by numerous cycles of photodeprotection and nucleotide addition. In this paper we examine strategies to reduce the number of synthesis cycles required to construct oligonucleotide arrays. By computer modeling oligonucleotide synthesis, we found that the number of required synthesis cycles could be significantly reduced by focusing upon how oligonucleotides are chosen from within genes and upon the order in which nucleotides are deposited on the array. The methods described here could provide a more efficient strategy to produce oligonucleotide arrays.
PMCID: PMC137151  PMID: 12384609
6.  Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367 
Molecular Microbiology  2009;74(6):1300-1313.
Microbial cellulose degradation is a central part of the global carbon cycle and has great potential for the development of inexpensive, carbon-neutral biofuels from non-food crops. Clostridium phytofermentans has a repertoire of 108 putative glycoside hydrolases to break down cellulose and hemicellulose into sugars, which this organism then ferments primarily to ethanol. An understanding of cellulose degradation at the molecular level requires learning the different roles of these hydrolases. In this study, we show that interspecific conjugation with Escherichia coli can be used to transfer a plasmid into C. phytofermentans that has a resistance marker, an origin of replication that can be selectively lost, and a designed group II intron for efficient, targeted chromosomal insertions without selection. We applied these methods to disrupt the cphy3367 gene, which encodes the sole family 9 glycoside hydrolase (GH9) in the C. phytofermentans genome. The GH9-deficient strain grew normally on some carbon sources such as glucose, but had lost the ability to degrade cellulose. Although C. phytofermentans upregulates the expression of numerous enzymes to break down cellulose, this process thus relies upon a single, key hydrolase, Cphy3367.
doi:10.1111/j.1365-2958.2009.06890.x
PMCID: PMC2810439  PMID: 19775243

Results 1-6 (6)