Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Characterization of the CRISPR/Cas Subtype I-A System of the Hyperthermophilic Crenarchaeon Thermoproteus tenax 
Journal of Bacteriology  2012;194(10):2491-2500.
CRISPR (clustered regularly interspaced short palindromic repeats) elements and cas (CRISPR-associated) genes are widespread in Bacteria and Archaea. The CRISPR/Cas system operates as a defense mechanism against mobile genetic elements (i.e., viruses or plasmids). Here, we investigate seven CRISPR loci in the genome of the crenarchaeon Thermoproteus tenax that include spacers with significant similarity not only to archaeal viruses but also to T. tenax genes. The analysis of CRISPR RNA (crRNA) transcription reveals transcripts of a length between 50 and 130 nucleotides, demonstrating the processing of larger crRNA precursors. The organization of identified cas genes resembles CRISPR/Cas subtype I-A, and the core cas genes are shown to be arranged on two polycistronic transcripts: cascis (cas4, cas1/2, and csa1) and cascade (csa5, cas7, cas5a, cas3, cas3′, and cas8a2). Changes in the environmental parameters such as UV-light exposure or high ionic strength modulate cas gene transcription. Two reconstitution protocols were established for the production of two discrete multipartite Cas protein complexes that correspond to their operonic gene arrangement. These data provide insights into the specialized mechanisms of an archaeal CRISPR/Cas system and allow selective functional analyses of Cas protein complexes in the future.
PMCID: PMC3347209  PMID: 22408157
2.  The Complete Genome Sequence of Thermoproteus tenax: A Physiologically Versatile Member of the Crenarchaeota 
PLoS ONE  2011;6(10):e24222.
Here, we report on the complete genome sequence of the hyperthermophilic Crenarchaeum Thermoproteus tenax (strain Kra1, DSM 2078T) a type strain of the crenarchaeotal order Thermoproteales. Its circular 1.84-megabase genome harbors no extrachromosomal elements and 2,051 open reading frames are identified, covering 90.6% of the complete sequence, which represents a high coding density. Derived from the gene content, T. tenax is a representative member of the Crenarchaeota. The organism is strictly anaerobic and sulfur-dependent with optimal growth at 86°C and pH 5.6. One particular feature is the great metabolic versatility, which is not accompanied by a distinct increase of genome size or information density as compared to other Crenarchaeota. T. tenax is able to grow chemolithoautotrophically (CO2/H2) as well as chemoorganoheterotrophically in presence of various organic substrates. All pathways for synthesizing the 20 proteinogenic amino acids are present. In addition, two presumably complete gene sets for NADH:quinone oxidoreductase (complex I) were identified in the genome and there is evidence that either NADH or reduced ferredoxin might serve as electron donor. Beside the typical archaeal A0A1-ATP synthase, a membrane-bound pyrophosphatase is found, which might contribute to energy conservation. Surprisingly, all genes required for dissimilatory sulfate reduction are present, which is confirmed by growth experiments. Mentionable is furthermore, the presence of two proteins (ParA family ATPase, actin-like protein) that might be involved in cell division in Thermoproteales, where the ESCRT system is absent, and of genes involved in genetic competence (DprA, ComF) that is so far unique within Archaea.
PMCID: PMC3189178  PMID: 22003381
3.  Reconstruction of the Central Carbohydrate Metabolism of Thermoproteus tenax by Use of Genomic and Biochemical Data 
Journal of Bacteriology  2004;186(7):2179-2194.
The hyperthermophilic, facultatively heterotrophic crenarchaeum Thermoproteus tenax was analyzed using a low-coverage shotgun-sequencing approach. A total of 1.81 Mbp (representing 98.5% of the total genome), with an average gap size of 100 bp and 5.3-fold coverage, are reported, giving insights into the genome of T. tenax. Genome analysis and biochemical studies enabled us to reconstruct its central carbohydrate metabolism. T. tenax uses a variant of the reversible Embden-Meyerhof-Parnas (EMP) pathway and two different variants of the Entner-Doudoroff (ED) pathway (a nonphosphorylative variant and a semiphosphorylative variant) for carbohydrate catabolism. For the EMP pathway some new, unexpected enzymes were identified. The semiphosphorylative ED pathway, hitherto supposed to be active only in halophiles, is found in T. tenax. No evidence for a functional pentose phosphate pathway, which is essential for the generation of pentoses and NADPH for anabolic purposes in bacteria and eucarya, is found in T. tenax. Most genes involved in the reversible citric acid cycle were identified, suggesting the presence of a functional oxidative cycle under heterotrophic growth conditions and a reductive cycle for CO2 fixation under autotrophic growth conditions. Almost all genes necessary for glycogen and trehalose metabolism were identified in the T. tenax genome.
PMCID: PMC374391  PMID: 15028704
4.  Pyruvate Kinase of the Hyperthermophilic Crenarchaeote Thermoproteus tenax: Physiological Role and Phylogenetic Aspects 
Journal of Bacteriology  2000;182(7):2001-2009.
Pyruvate kinase (PK; EC of Thermoproteus tenax was purified to homogeneity, and its coding gene was cloned and expressed in Escherichia coli. It represents a homomeric tetramer with a molecular mass of 49 kDa per subunit. PK exhibits positive binding cooperativity with respect to phosphoenolpyruvate and metal ions such as Mg2+ and Mn2+. Heterotropic effects, as commonly found for PKs from bacterial and eucaryal sources, could not be detected. The enzyme does not depend on K+ ions. Heterotrophically grown cells exhibit specific activity of PK four times higher than autotrophically grown cells. Since the mRNA level of the PK coding gene is also accordingly higher in heterotrophic cells, we conclude that the PK activity is adjusted to growth conditions mainly on the transcript level. The enzymic properties of the PK and the regulation of its expression are discussed with respect to the physiological framework given by the T. tenax-specific variant of the Embden-Meyerhof-Parnas pathway. T. tenax PK shows moderate overall sequence similarity (25 to 40% identity) to its bacterial and eucaryal pendants. Phylogenetic analyses of the known PK sequences result in a dichotomic tree topology that divides the enzymes into two major PK clusters, probably diverged by an early gene duplication event. The phylogenetic divergence is paralleled by a striking phenotypic differentiation of PKs: PKs of cluster I, which occur in eucaryal cytoplasm, some gamma proteobacteria, and low-GC gram-positive bacteria, are only active in the presence of fructose-1,6-bisphosphate or other phosphorylated sugars, whereas PKs of cluster II, found in various bacterial phyla, plastids, and in Archaea, show activity without effectors but are commonly regulated by the energy charge of the cell.
PMCID: PMC101911  PMID: 10715009

Results 1-4 (4)