Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  SULF2 Methylation is Prognostic for Lung Cancer Survival and Increases Sensitivity to Topoisomerase-I inhibitors via Induction of ISG15 
Oncogene  2011;31(37):4107-4116.
The heparan sulfate 6-O-endosulfatase (SULF2) promotes growth and metastasis of solid tumors. We recently identified that cytosine methylation of the SULF2 promoter is associated with better survival of resected lung adenocarcinoma patients and now also demonstrate a marginal improvement in survival of advanced non-small cell lung cancer (NSCLC) patients receiving standard chemotherapy (HR = 0.63, p = 0.07). Subsequent studies focused on investigating the effect of methylation on SULF2 expression and its genome-wide impact. The genes and pathways modulated by epigenetic inactivation of SULF2 and the effects on sensitivity to chemotherapy were characterized in vitro and in vivo. Silencing SULF2 through siRNA or methylation primarily increased expression of interferon-inducible genes including ISG15, a marker for increased sensitivity to topoisomerase-1 inhibitors such as camptothecin. NSCLC cell lines with methylated SULF2 (SULF2M) express 60-fold higher ISG15 compared to SULF2 unmethylated (SULF2U) NSCLC cell lines and normal human bronchial epithelial cells. In vitro, SULF2M and high ISG15 (ISG15H) expressing NSCLC cell lines were 134-fold more sensitive to camptothecin than SULF2U and low ISG15 (ISG15L) expressing cell lines. Topotecan, a soluble analogue of camptothecin and FDA approved anti-cancer drug, dramatically arrested the growth of SULF2M-ISG15H, but not SULF2U-ISG15L lung tumors in nude mice (p < 0.002). Similarly, high ISG15 expression that is comparable to the topotecan sensitive NSCLC cell lines was found in tumors from 25% of NSCLC patients compared to normal lung indicating a potential to identify and target the most sensitive NSCLC subpopulation for personalized topotecan therapy.
PMCID: PMC3307938  PMID: 22158045
NSCLC; Camptothecin; SULF-2; Oncogene; Topotecan
2.  EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells 
Cancer research  2011;71(8):3087-3097.
Epithelial mesenchymal transition (EMT) is strongly associated with cancer progression, but its potential role during premalignant development has not been studied. Here we show that a four-week exposure of immortalized human bronchial epithelial cells (HBECs) to tobacco carcinogens can induce a persistent, irreversible, and multifaceted dedifferentiation program marked by EMT and the emergence of stem cell-like properties. EMT induction was epigenetically driven, initially by chromatin remodeling through H3K27me3 enrichment and later by ensuing DNA methylation to sustain silencing of tumor suppressive microRNAs miR-200b, miR-200c, and miR-205, which were implicated in the dedifferentiation program in HBECs and also in primary lung tumors. Carcinogen-treated HBECs acquired stem-like features characterized by their ability to form spheroids with branching tubules and enrichment of the CD44high/CD24low, CD133, and ALDH1 stem cell-like markers. miRNA overexpression studies indicated that regulation of the EMT, stem-like, and transformed phenotypes in HBECs were distinct events. Our findings extend present concepts of how EMT participates in cancer pathophysiology by showing that EMT induction can participate in cancer initiation to promote the clonal expansion of premalignant lung epithelial cells.
PMCID: PMC3078195  PMID: 21363915
methylation; miRNA; EMT; stem cells; transformation
3.  Differential Epigenetic Regulation of TOX Subfamily High Mobility Group Box Genes in Lung and Breast Cancers 
PLoS ONE  2012;7(4):e34850.
Aberrant cytosine methylation affects regulation of hundreds of genes during cancer development. In this study, a novel aberrantly hypermethylated CpG island in cancer was discovered within the TOX2 promoter. TOX2 was unmethylated in normal cells but 28% lung (n = 190) and 23% breast (n = 80) tumors were methylated. Expression of two novel TOX2 transcripts identified was significantly reduced in primary lung tumors than distant normal lung (p<0.05). These transcripts were silenced in methylated lung and breast cancer cells and 5-Aza-2-deoxycytidine treatment re-expressed both. Extension of these assays to TOX, TOX3, and TOX4 genes that share similar genomic structure and protein homology with TOX2 revealed distinct methylation profiles by smoking status, histology, and cancer type. TOX was almost exclusively methylated in breast (43%) than lung (5%) cancer, whereas TOX3 was frequently methylated in lung (58%) than breast (30%) tumors. TOX4 was unmethylated in all samples and showed the highest expression in normal lung. Compared to TOX4, expression of TOX, TOX2 and TOX3 in normal lung was 25, 44, and 88% lower, respectively, supporting the premise that reduced promoter activity confers increased susceptibility to methylation during lung carcinogenesis. Genome-wide assays revealed that siRNA-mediated TOX2 knockdown modulated multiple pathways while TOX3 inactivation targeted neuronal development and function. Although these knockdowns did not result in further phenotypic changes of lung cancer cells in vitro, the impact on tissue remodeling, inflammatory response, and cell differentiation pathways suggest a potential role for TOX2 in modulating tumor microenvironment.
PMCID: PMC3319602  PMID: 22496870
4.  The A/G Allele of Rs16906252 Predicts for MGMT Methylation and Is Selectively Silenced in Premalignant Lesions from Smokers and in Lung Adenocarcinomas 
To address the association between sequence variants within the MGMT promoter-enhancer region and methylation of MGMT in premalignant lesions from smokers and lung adenocarcinomas, their biological effects on gene regulation, and targeting MGMT for therapy.
Experimental Design
SNPs identified through sequencing a 1.9kb fragment 5' of MGMT were examined in relation to MGMT methylation in 169 lung adenocarcinomas and 1731 sputum samples from smokers. The effect of promoter haplotypes on MGMT expression was tested using a luciferase reporter assay and cDNA expression analysis along with allele-specific sequencing for methylation. The response of MGMT methylated lung cancer cell lines to the alkylating agent temozolomide was assessed.
The A allele of rs16906252 and the haplotype containing this SNP were strongly associated with increased risk for MGMT methylation in adenocarcinomas (ORs ≥ 94). This association was observed to a lesser extent in sputum samples in both smoker cohorts. The A allele was selectively methylated in primary lung tumors and cell lines heterozygous for rs16906252. With the most common haplotype as the reference, a 20–41% reduction in promoter activity was seen for the haplotype carrying the A allele that correlated with lower MGMT expression. The sensitivity of lung cancer cell lines to temozolamide was strongly correlated with levels of MGMT methylation and expression.
These studies provide strong evidence that the A allele of a MGMT promoter-enhancer SNP is a key determinant for MGMT methylation in lung carcinogenesis. Moreover, temozolamide treatment may benefit a subset of lung cancer patients methylated for MGMT.
PMCID: PMC3070839  PMID: 21355081
MGMT; allele specific methylation; single nucleotide polymorphism; sputum; lung cancer
5.  Re-expression of CXCL14, a common target for epigenetic silencing in lung cancer, induces tumor necrosis 
Oncogene  2010;29(37):5159-5170.
Chemokines are important regulators of directional cell migration and tumor metastasis. A genome-wide transcriptome array designed to uncover novel genes silenced by methylation in lung cancer identified the CXC-subfamily of chemokines. Expression of eleven of the sixteen known human CXC-chemokines was increased in lung adenocarcinoma cell lines after treatment with 5-aza-2deoxycytidine (DAC). Tumor-specific methylation leading to silencing of CXCL5, 12 and 14 was found in over 75% of primary lung adenocarcinomas and DAC treatment restored expression of each silenced gene. Forced expression of CXCL14 in H23 cells where this gene is silenced by methylation increased cell death in vitro and dramatically reduced in vivo growth of lung tumor xenografts through necrosis of up to 90% of the tumor mass. CXCL14 re-expression had a profound effect on the genome altering the transcription of over 1,000 genes, including increased expression of 30 cell cycle inhibitor and pro-apoptosis genes. In addition, CXCL14 methylation in sputum from asymptomatic early stage lung cancer cases was associated with a 2.9-fold elevated risk for this disease compared to controls, substantiating its potential as a biomarker for early detection of lung cancer. Together these findings identify CXCL14 as an important tumor suppressor gene epigenetically silenced during lung carcinogenesis.
PMCID: PMC2940978  PMID: 20562917
CXCL14; Chemokines; lung cancer; DNA methylation; CXCL5; CXCL12
6.  Concomitant promoter methylation of multiple genes in lung adenocarcinomas from current, former and never smokers 
Carcinogenesis  2009;30(7):1132-1138.
Aberrant promoter hypermethylation is one of the major mechanisms in carcinogenesis and some critical growth regulatory genes have shown commonality in methylation across solid tumors. Twenty-six genes, 14 identified through methylation in colon and breast cancers, were evaluated using primary lung adenocarcinomas (n = 175) from current, former and never smokers. Tumor specificity of methylation was validated through comparison of 14 lung cancer cell lines to normal human bronchial epithelial cells derived from bronchoscopy of 20 cancer-free smokers. Twenty-five genes were methylated in 11–81% of primary tumors. Prevalence for methylation of TNFRSF10C, BHLHB5 and BOLL was significantly higher in adenocarcinomas from never smokers than smokers. The relation between methylation of individual genes was examined using pairwise comparisons. A significant association was seen between 138 (42%) of the possible 325 pairwise comparisons. Most notably, methylation of MMP2, BHLHB4 or p16 was significantly associated with methylation of 16–19 other genes, thus predicting for a widespread methylation phenotype. Kaplan–Meier log-rank test and proportional hazard models identified a significant association between methylation of SULF2 (a pro-growth, -angiogenesis and -migration gene) and better patient survival (hazard ratio = 0.23). These results demonstrate a high degree of commonality for targeted silencing of genes between lung and other solid tumors and suggest that promoter hypermethylation in cancer is a highly co-ordinated event.
PMCID: PMC2704285  PMID: 19435948
7.  Mining the Epigenome for Methylated Genes in Lung Cancer 
Lung cancer has become a global public health burden, further substantiating the need for early diagnosis and more effective targeted therapies. The key to accomplishing both these goals is a better understanding of the genes and pathways disrupted during the initiation and progression of this disease. Gene promoter hypermethylation is an epigenetic modification of DNA at promoter CpG islands that together with changes in histone structure culminates in loss of transcription. The fact that gene promoter hypermethylation is a major mechanism for silencing genes in lung cancer has stimulated the development of screening approaches to identify additional genes and pathways that are disrupted within the epigenome. Some of these approaches include restriction landmark scanning, methylation CpG island amplification coupled with representational difference analysis, and transcriptome-wide screening. Genes identified by these approaches, their function, and prevalence in lung cancer are described. Recently, we used global screening approaches to interrogate 43 genes in and around the candidate lung cancer susceptibility locus, 6q23–25. Five genes, TCF21, SYNE1, AKAP12, IL20RA, and ACAT2, were methylated at 14 to 81% prevalence, but methylation was not associated with age at diagnosis or stage of lung cancer. These candidate tumor suppressor genes likely play key roles in contributing to sporadic lung cancer. The realization that methylation is a dominant mechanism in lung cancer etiology and its reversibility by pharmacologic agents has led to the initiation of translational studies to develop biomarkers in sputum for early detection and the testing of demethylating and histone deacetylation inhibitors for treatment of lung cancer.
PMCID: PMC2645235  PMID: 19017733
gene promoter hypermethylation; lung cancer; chromosome 6; epigenetics
8.  Flow Cytometry for Real-Time Measurement of Guanine Nucleotide Binding and Exchange by Ras-like GTPases 
Analytical biochemistry  2008;381(2):258-266.
Ras-like small GTPases cycle between GTP-bound active and GDP-bound inactive conformational states to regulate diverse cellular processes. Despite their importance, detailed kinetic or comparative studies of family members are rarely undertaken due to the lack of real-time assays measuring nucleotide binding or exchange. Here, we report a bead-based, flow cytometric assay that quantitatively measures the nucleotide binding properties of GST-chimeras for prototypical Ras-family members Rab7 and Rho. Measurements are possible in the presence or absence of Mg2+, with magnesium cations principally increasing affinity and slowing nucleotide dissociation rate 8- to 10-fold. GST-Rab7 exhibited a 3-fold higher affinity for GDP relative to GTP that is consistent with a 3-fold slower dissociation rate of GDP. Strikingly, GST-Rab7 had a marked preference for GTP with ribose ring-conjugated BODIPY FL. The more commonly used γ-NH-conjugated BODIPY FL GTP analogue failed to bind to GST-Rab7. In contrast, both BODIPY analogues bound equally well to GST-RhoA and GST-RhoC. Comparisons of the GST-Rab7 and GST-RhoA GTP-binding pockets provide a structural basis for the observed binding differences. In sum, the flow cytometric assay can be used to measure nucleotide binding properties of GTPases in real-time and quantitatively assess differences between GTPases.
PMCID: PMC2633595  PMID: 18638444
Rab and Rho GTPases; membrane trafficking; actin remodeling; nucleotide binding and exchange; fluorescent GTP analogues

Results 1-8 (8)