Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Feasibility and accuracy of relative electron density determined by virtual monochromatic CT value subtraction at two different energies using the gemstone spectral imaging 
Recent work by Saito (2012) has demonstrated a simple conversion from energy-subtracted computed tomography (CT) values (ΔHU) obtained using dual-energy CT to relative electron density (RED) via a single linear relationship. The purpose of this study was to investigate the feasibility of this method to obtain RED from virtual monochromatic CT images obtained by the gemstone spectral imaging (GSI) mode with fast-kVp switching.
A tissue characterization phantom with 13 inserts made of different materials was scanned using the GSI mode on a Discovery CT750 HD. Four sets of virtual monochromatic CT images (60, 77, 100 and 140 keV) were obtained from a single GSI acquisition. When we define Δ HU in terms of the weighting factor for the subtraction α, Δ HU ≡ (1 + α)H - αL (H and L represent the CT values for high and low energy respectively), the relationship between Δ HU and RED is approximated as a linear function, a × Δ HU/1000 + b (a, b = unity). We evaluated the agreement between the determined and nominal RED. We also have investigated reproducibility over short and long time periods.
For the 13 insert materials, the RED determined by monochromatic CT images agreed with the nominal values within 1.1% and the coefficient of determination for this calculation formula was greater than 0.999. The observed reproducibility (1 standard deviation) of calculation error was within 0.5% for all materials.
These findings indicate that virtual monochromatic CT scans at two different energies using GSI mode can provide an accurate method for estimating RED.
PMCID: PMC3627631  PMID: 23570343
Gemstone spectral imaging; Monochromatic images; Relative electron density; Dual energy; Computed tomography
2.  Clinical recovery time from conscious sedation for dental outpatients. 
Anesthesia Progress  2002;49(4):124-127.
For dental outpatients undergoing conscious sedation, recovery from sedation must be sufficient to allow safe discharge home, and many researchers have defined "recovery time" as the time until the patient was permitted to return home after the end of dental treatment. But it is frequently observed that patients remain in the clinic after receiving permission to go home. The present study investigated "clinical recovery time," which is defined as the time until discharge from the clinic after a dental procedure. We analyzed data from 61 outpatients who had received dental treatment under conscious sedation at the Hiroshima University Dental Hospital between January 1998 and December 2000 (nitrous oxide-oxygen inhalation sedation [n = 35], intravenous sedation with midazolam [n = 10], intravenous sedation with propofol [n = 16]). We found that the median clinical recovery time was 40 minutes after nitrous oxide-oxygen sedation, 80 minutes after midazolam sedation, and 52 minutes after propofol sedation. The clinical recovery time was about twice as long as the recovery time described in previous studies. In a comparison of the sedation methods, clinical recovery time differed (P = .0008), being longer in the midazolam sedation group than in the nitrous oxide-oxygen sedation group (P = .018). These results suggest the need for changes in treatment planning for dental outpatients undergoing conscious sedation.
PMCID: PMC2007416  PMID: 12779113

Results 1-2 (2)