Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Tan, jiangyou")
1.  Independent Action between DvSnf7 RNA and Cry3Bb1 Protein in Southern Corn Rootworm, Diabrotica undecimpunctata howardi and Colorado Potato Beetle, Leptinotarsa decemlineata 
PLoS ONE  2015;10(3):e0118622.
In recent years, corn rootworm (CRW)-resistant maize events producing two or more CRW-active Bt proteins have been commercialized to enhance efficacy against the target pest(s) by providing multiple modes of action (MoA). The maize hybrid MON 87411 has been developed that produces the CRW-active Cry3Bb1 Bt protein (hereafter Cry3Bb1) and expresses a RNAi-mediated MoA that also targets CRW. As part of an environmental risk assessment for MON 87411, the potential for an interaction between the CRW-active DvSnf7 RNA (hereafter DvSnf7) and Cry3Bb1 was assessed in 12-day diet incorporation bioassays with the southern corn rootworm (SCR, Diabrotica undecimpunctata howardi). The potential for an interaction between DvSnf7 and Cry3Bb1 was evaluated with two established experimental approaches. The first approach evaluated each substance alone and in combination over three different response levels. For all three response levels, observed responses were shown to be additive and not significantly different from predicted responses under the assumption of independent action. The second approach evaluated the potential for a fixed sub-lethal concentration of Cry3Bb1 to decrease the median lethal concentration (LC50) of DvSnf7 and vice-versa. With this approach, the LC50 value of DvSnf7 was not altered by a sub-lethal concentration of Cry3Bb1 and vice-versa. In addition, the potential for an interaction between the Cry3Bb1 and DvSnf7 was tested with Colorado potato beetle (CPB, Leptinotarsa decemlineata), which is sensitive to Cry3Bb1 but not DvSnf7. CPB assays also demonstrated that DvSnf7 does not alter the activity of Cry3Bb1. The results from this study provide multiple lines of evidence that DvSnf7 and Cry3Bb1 produced in MON 87411 have independent action.
PMCID: PMC4348175  PMID: 25734482
2.  Identification of Bacterial Community Composition in Freshwater Aquaculture System Farming of Litopenaeus vannamei Reveals Distinct Temperature-Driven Patterns 
Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL). Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT) and at lower (WLT) temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.
PMCID: PMC4159818  PMID: 25105725
aquaculture; Litopenaeus vannamei; bacterial community; temperature; pathogen
4.  Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte) 
Transgenic Research  2013;22(6):1207-1222.
The sequence specificity of the endogenous RNA interference pathway allows targeted suppression of genes essential for insect survival and enables the development of durable and efficacious insecticidal products having a low likelihood to adversely impact non-target organisms. The spectrum of insecticidal activity of a 240 nucleotide (nt) dsRNA targeting the Snf7 ortholog in Western Corn Rootworm (WCR; Diabrotica virgifera virgifera) was characterized by selecting and testing insects based upon their phylogenetic relatedness to WCR. Insect species, representing 10 families and 4 Orders, were evaluated in subchronic or chronic diet bioassays that measured potential lethal and sublethal effects. When a specific species could not be tested in diet bioassays, the ortholog to the WCR Snf7 gene (DvSnf7) was cloned and corresponding dsRNAs were tested against WCR and Colorado potato beetle (Leptinotarsa decemlineata); model systems known to be sensitive to ingested dsRNA. Bioassay results demonstrate that the spectrum of activity for DvSnf7 is narrow and activity is only evident in a subset of beetles within the Galerucinae subfamily of Chrysomelidae (>90 % identity with WCR Snf7 240 nt). This approach allowed for evaluating the relationship between minimum shared nt sequence length and activity. A shared sequence length of ≥21 nt was required for efficacy against WCR (containing 221 potential 21-nt matches) and all active orthologs contained at least three 21 nt matches. These results also suggest that WCR resistance to DvSnf7 dsRNA due to single nucleotide polymorphisms in the target sequence of 240 nt is highly unlikely.
Electronic supplementary material
The online version of this article (doi:10.1007/s11248-013-9716-5) contains supplementary material, which is available to authorized users.
PMCID: PMC3835954  PMID: 23748931
RNAi; Specificity; Coleoptera; Activity spectrum; Non-target organism
5.  Coexpression with Auxiliary β Subunits Modulates the Action of Tefluthrin on Rat Nav1.6 and Nav1.3 Sodium Channels 
We expressed the rat Nav1.3 and Nav1.6 sodium channel α subunit isoforms in Xenopus oocytes either alone or with the rat β1 and β2 auxiliary subunits in various combinations and assessed the sensitivity of the expressed channels to resting and use-dependent modification by the pyrethroid insecticide tefluthrin using the two-electrode voltage clamp technique. Coexpression with the β1 and β2 subunits, either individually or in combination, did not affecting the resting sensitivity of Nav1.6 channels to tefluthrin. Modification by tefluthrin of Nav1.6 channels in the absence of β subunits was not altered by the application of trains of high-frequency depolarizing prepulses. By contrast, coexpression of the Nav1.6 channel with the β1 subunit enhanced the extent of channel modification twofold following repeated depolarization. Coexpression of Nav1.6 with the β2 subunit also slightly enhanced modification following repeated depolarization, but coexpression of Nav1.6 with both β subunits caused enhanced modification following repeated depolarization that was indistinguishable from that found with Nav1.6+β1 channels. In contrast to Nav1.6, the resting modification by tefluthrin of Nav1.3 channels expressed in the absence of β subunits was reduced by repeated depolarization. However, tefluthrin modification of the Nav1.3 α subunit expressed with both β subunits was enhanced 1.7-fold by repeated depolarization, thereby confirming that β subunit modulation of use-dependent effects was not confined to the Nav1.6 isoform. These results show that the actions of pyrethroids on mammalian sodium channels in the Xenopus oocyte expression system are determined in part by the interactions of the sodium channel α subunit with the auxiliary β subunits that are part of the heteromultimeric sodium channel complexes found in neurons and other excitable cells.
PMCID: PMC3346283  PMID: 22577241
voltage-gated sodium channels; Nav1.6 isoform; Nav1.3 isoform; β subunit; voltage clamp; tefluthrin
6.  Characterizing the Mechanism of Action of Double-Stranded RNA Activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte) 
PLoS ONE  2012;7(10):e47534.
RNA interference (RNAi) has previously been shown to be effective in western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) larvae via oral delivery of synthetic double-stranded RNA (dsRNA) in an artificial diet bioassay, as well as by ingestion of transgenic corn plant tissues engineered to express dsRNA. Although the RNAi machinery components appear to be conserved in Coleopteran insects, the key steps in this process have not been reported for WCR. Here we characterized the sequence of events that result in mortality after ingestion of a dsRNA designed against WCR larvae. We selected the Snf7 ortholog (DvSnf7) as the target mRNA, which encodes an essential protein involved in intracellular trafficking. Our results showed that dsRNAs greater than or equal to approximately 60 base-pairs (bp) are required for biological activity in artificial diet bioassays. Additionally, 240 bp dsRNAs containing a single 21 bp match to the target sequence were also efficacious, whereas 21 bp short interfering (si) RNAs matching the target sequence were not. This result was further investigated in WCR midgut tissues: uptake of 240 bp dsRNA was evident in WCR midgut cells while a 21 bp siRNA was not, supporting the size-activity relationship established in diet bioassays. DvSnf7 suppression was observed in a time-dependent manner with suppression at the mRNA level preceding suppression at the protein level when a 240 bp dsRNA was fed to WCR larvae. DvSnf7 suppression was shown to spread to tissues beyond the midgut within 24 h after dsRNA ingestion. These events (dsRNA uptake, target mRNA and protein suppression, systemic spreading, growth inhibition and eventual mortality) comprise the overall mechanism of action by which DvSnf7 dsRNA affects WCR via oral delivery and provides insights as to how targeted dsRNAs in general are active against insects.
PMCID: PMC3469495  PMID: 23071820
7.  Actions of Tefluthrin on Rat Nav1.7 Voltage-Gated Sodium Channels Expressed in Xenopus Oocytes 
In rats expression of the Nav1.7 voltage-gated sodium channel isoform is restricted to the peripheral nervous system and is abundant in the sensory neurons of the dorsal root ganglion. We expressed the rat Nav1.7 sodium channel α subunit together with the rat auxiliary β1 and β2 subunits in Xenopus laevis oocytes and assessed the effects of the pyrethroid insecticide tefluthrin on the expressed currents using the two-electrode voltage clamp method. Tefluthrin at 100 µM modified of Nav1.7 channels to prolong inactivation of the peak current during a depolarizing pulse, resulting in a marked "late current" at the end of a 40-ms depolarization, and induced a sodium tail current following repolarization. Tefluthrin modification was enhanced up to two-fold by the application of a train of up to 100 5-ms depolarizing prepulses. These effects of tefluthrin on Nav1.7 channels were qualitatively similar to its effects on rat Nav1.2, Nav1.3 and Nav1.6 channels assayed previously under identical conditions. However, Nav1.7 sodium channels were distinguished by their low sensitivity to modification by tefluthrin, especially compared to Nav1.3 and Nav1.6 channels. It is likely that Nav1.7 channels contribute significantly to the tetrodotoxin-sensitive, pyrethroid-resistant current found in cultured dorsal root ganglion neurons. We aligned the complete amino acid sequences of four pyrethroid-sensitive isoforms (house fly Vssc1; rat Nav1.3, Nav1.6 and Nav1.8) and two pyrethroid-resistant isoforms (rat Nav1.2 and Nav1.7) and found only a single site, located in transmembrane segment 6 of homology domain I, at which the amino acid sequence was conserved among all four sensitive isoform sequences but differed in the two resistant isoform sequences. This position, corresponding to Val410 of the house fly Vssc1 sequence, also aligns with sites of multiple amino acid substitutions identified in the sodium channel sequences of pyrethroid-resistant insect populations. These results implicate this single amino acid polymorphism in transmembrane segment 6 of sodium channel homology domain I as a determinant of the differential pyrethroid sensitivity of rat sodium channel isoforms.
PMCID: PMC3181098  PMID: 21966053
voltage-gated sodium channel; Nav1.7 isoform; pyrethroid; tefluthrin; peripheral nervous system; dorsal root ganglion
8.  Independent and Joint Modulation of Rat Nav1.6 Voltage-Gated Sodium Channels by Coexpression with the Auxiliary β1 and β2 Subunits 
The Nav1.6 voltage-gated sodium channel α subunit isoform is the most abundant isoform in the brain and is implicated in the transmission of high frequency action potentials. Purification and immunocytochemical studies imply that Nav1.6 exist predominantly as Nav1.6+β1+β2 heterotrimeric complexes. We assessed the independent and joint effects of the rat β1 and β2 subunits on the gating and kinetic properties of rat Nav1.6 channels by recording whole-cell currents in the two-electrode voltage clamp configuration following transient expression in Xenopus oocytes. The β1 subunit accelerated fast inactivation of sodium currents but had no effect on the voltage dependence of their activation and steady-state inactivation and also prevented the decline of currents following trains of high-frequency depolarizing prepulses. The β2 subunit selectively retarded the fast phase of fast inactivation and shifted the voltage dependence of activation towards depolarization without affecting other gating properties and had no effect on the decline of currents following repeated depolarization. The β1 and β2 subunits expressed together accelerated both kinetic phases of fast inactivation, shifted the voltage dependence of activation towards hyperpolarization, and gave currents with a persistent component typical of those recorded from neurons expressing Nav1.6 sodium channels. These results identify unique effects of the β1 and β2 subunits and demonstrate that joint modulation by both auxiliary subunits gives channel properties that are not predicted by the effects of individual subunits.
PMCID: PMC3082003  PMID: 21439942
voltage-gated sodium channels; Nav1.6; β subunits; voltage clamp; kinetics; steady-state properties
9.  Divergent Actions of the Pyrethroid Insecticides S-Bioallethrin, Tefluthrin and Deltamethrin on Rat Nav1.6 Sodium Channels 
Toxicology and applied pharmacology  2010;247(3):229-237.
We expressed rat Nav1.6 sodium channels in combination with the rat β1 and β2 auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a Type I structure, produced transient modification evident in the induction of rapidly-decaying sodium tail currents, weak resting modification (5.7% modification at 100 μM), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a Type II structure, produced sodium tail currents that were ~9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 μM), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a Type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 μM), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration–effect data showed that repetitive depolarization increased the potency of tefluthrin ~15-fold and that tefluthrin was ~10-fold more potent than deltamethrin as a use-dependent modifier of Nav1.6 sodium channels. Concentration–effect data from parallel experiments with the rat Nav1.2 sodium channel co-expressed with the rat β1 and β2 subunits in oocytes showed that the Nav1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Nav1.2 isoform. These results implicate sodium channels containing the Nav1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.
PMCID: PMC2929565  PMID: 20624410
voltage-gated sodium channel; Nav1.6 isoform; pyrethroid; S-bioallethrin; deltamethrin; tefluthrin
10.  RNA Editing Generates Tissue-specific Sodium Channels with Distinct Gating Properties* 
The Journal of biological chemistry  2004;279(31):32554-32561.
Sodium channels play an essential role in generating the action potential in eukaryotic cells, and their transcripts, especially those in insects, undergo extensive A-to-I RNA editing. The functional consequences of RNA editing of sodium channel transcripts, however, have yet to be determined. We characterized 20 splice variants of the German cockroach sodium channel gene BgNav. Functional analysis revealed that these variants exhibited a broad range of voltage-dependent activation and inactivation. Further analysis of two variants, BgNav1-1 and BgNav1-2, which activate at more depolarizing membrane potentials than other variants, showed that RNA editing events were responsible for variant-specific gating properties. Two U-to-C editing sites identified in BgNav1-1 resulted in a Leu to Pro change in segment 1 of domain III (IIIS1) and a Val to Ala change in IVS4. The Leu to Pro change shifted both the voltage dependence of activation and steady-state inactivation in the depolarizing direction. Two A-to-I editing events in BgNav1-2 resulted in a Lys to Arg change in IS2 and an Ile to Met change in IVS3. The Lys to Arg change shifted the voltage dependence of activation in the depolarizing direction. Moreover, these RNA editing events occurred in a tissue-specific and development-specific manner. Our findings provide direct evidence that RNA editing is an important mechanism generating tissue-/cell type-specific functional variants of sodium channels.
PMCID: PMC3066004  PMID: 15136570
11.  Alternative Splicing of an Insect Sodium Channel Gene Generates Pharmacologically Distinct Sodium Channels 
Alternative splicing is a major mechanism by which potassium and calcium channels increase functional diversity in animals. Extensive alternative splicing of the para sodium channel gene and developmental regulation of alternative splicing have been reported in Drosophila species. Alternative splicing has also been observed for several mammalian voltage-gated sodium channel genes. However, the functional significance of alternative splicing of sodium channels has not been demonstrated. In this study, we identified three mutually exclusive alternative exons encoding part of segments 3 and 4 of domain III in the German cockroach sodium channel gene, paraCSMA. The splice site is conserved in the mouse, fish, and human Nav1.6 sodium channel genes, suggesting an ancient origin. One of the alternative exons possesses a stop codon, which would generate a truncated protein with only the first two domains. The splicing variant containing the stop codon is detected only in the PNS, whereas the other two full-size variants were detected in both the PNS and CNS. When expressed in Xenopus oocytes, the two splicing variants produced robust sodium currents, but with different gating properties, whereas the splicing variant with the stop codon did not produce any detectable sodium current. Furthermore, these two functional splicing variants exhibited a striking difference in sensitivity to a pyrethroid insecticide, deltamethrin. Exon swapping partially reversed the channel sensitivity to deltamethrin. Our results therefore provide the first evidence that alternative splicing of a sodium channel gene produces pharmacologically distinct channels.
PMCID: PMC3062512  PMID: 12097481
alternative splicing; para; paraCSMA; sodium channel; pyrethroid insecticide; Xenopus oocyte expression system
12.  Synergistic interaction between two cockroach sodium channel mutations and a tobacco budworm sodium channel mutation in reducing channel sensitivity to a pyrethroid insecticide 
Pyrethroid insecticide resistance due to reduced nerve sensitivity, known as knockdown resistance (kdr or kdr-type), is linked to multiple point mutations in the para-homologous sodium channel genes. Previously we demonstrated that two mutations (E434K and C764R) in the German cockroach sodium channel greatly enhanced the ability of the L993F mutation (a known kdr -type mutation) to reduce sodium channel sensitivity to deltamethrin, a pyrethroid insecticide. Neither E434K nor C764R alone, however, altered sodium channel sensitivity. To examine whether E434K and C764R also enhance the effect of pyrethroid resistance-associated sodium channel mutations identified in other insects, we introduced a V to M mutation (V409M) into the cockroach sodium channel protein at the position that corresponds to the V421M mutation in the Heliothis virescens sodium channel protein. We found that the V409M mutation alone modified the gating properties of the sodium channel and reduced channel sensitivity to deltamethrin by 10-fold. Combining the V409M mutation with either the E434K or C764K alone did not reduce the V409M channel sensitivity to deltamethrin further. However, the triple mutation combination (V409M, E434K and C764R) dramatically reduced channel sensitivity by 100-fold compared with the wild-type channel. These results suggest that the E434K and C764R mutations are important modifiers of sodium channel sensitivity to pyrethroid insecticides.
PMCID: PMC3049304  PMID: 11886774
Knockdown resistance; Pyrethroids; Insecticide resistance; Sodium channel; Xenopus oocyte expression system
13.  Human and Rat Nav1.3 Voltage-Gated Sodium Channels Differ in Inactivation Properties and Sensitivity to the Pyrethroid Insecticide Tefluthrin 
Neurotoxicology  2008;30(1):81-89.
Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. The pore-forming α subunits of mammalian sodium channels are encoded by a family of 9 genes, designated Nav1.1 - Nav1.9. Native sodium channels in the adult central nervous system (CNS) are heterotrimeric complexes of one of these 9 α subunits and two auxiliary (β) subunits. Here we compare the functional properties and pyrethroid sensitivity of the rat and human Nav1.3 isoforms, which are abundantly expressed in the developing CNS. Coexpression of the rat Nav1.3 and human Nav1.3 α subunits in combination with their conspecific β1 and β2 subunits in Xenopus laevis oocytes gave channels with markedly different inactivation properties and sensitivities to the pyrethroid insecticide tefluthrin. Rat Nav1.3 channels inactivated more slowly than human Nav1.3 channels during a depolarizing pulse. The rat and human channels also differed in their voltage dependence of steady-state inactivation. Exposure of rat and human Nav1.3 channels to 100 μM tefluthrin in the resting state produced populations of channels that activated, inactivated and deactivated more slowly than unmodified channels. For both rat and human channels, application of trains of depolarizing prepulses enhanced the extent of tefluthrin modification approximately twofold; this result implies that tefluthrin may bind to both the resting and open states of the channel. Modification of rat Nav1.3 channels by 100 μM tefluthrin was four-fold greater than that measured in parallel assays with human Nav1.3 channels. Human Nav1.3 channels were also less sensitive to tefluthrin than rat Nav1.2 channels, which are considered to be relatively insensitive to pyrethroids. These data provide the first direct comparison of the functional and pharmacological properties of orthologous rat and human sodium channels and demonstrate that orthologous channels with a high degree of amino acid sequence conservation differ in both their functional properties and their sensitivities to pyrethroid insecticides.
PMCID: PMC2696113  PMID: 19026681
Nav1.3; oocyte; sodium channel; pyrethroid; tefluthrin; rat; human

Results 1-13 (13)