PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Increase in number of helminth species from Dutch red foxes over a 35-year period 
Parasites & Vectors  2014;7:166.
Background
The red fox (Vulpes vulpes) is host to a community of zoonotic and other helminth species. Tracking their community structure and dynamics over decades is one way to monitor the long term risk of parasitic infectious diseases relevant to public and veterinary health.
Methods
We identified 17 helminth species from 136 foxes by mucosal scraping, centrifugal sedimentation/flotation and the washing and sieving technique. We applied rarefaction analysis to our samples and compared the resulting curve to the helminth community reported in literature 35 years ago.
Results
Fox helminth species significantly increased in number in the last 35 years (p-value <0.025). Toxascaris leonina, Mesocestoides litteratus, Trichuris vulpis and Angiostrongylus vasorum are four new veterinary-relevant species. The zoonotic fox tapeworm (E. multilocularis) was found outside the previously described endemic regions in the Netherlands.
Conclusions
Helminth fauna in Dutch red foxes increased in biodiversity over the last three decades.
doi:10.1186/1756-3305-7-166
PMCID: PMC3978201  PMID: 24708710
Helminth fauna; Red fox; Biodiversity; Molecular analysis; Echinococcus; Toxocara; Taenia; Alaria
2.  Aichi Virus in Sewage and Surface Water, the Netherlands 
Emerging Infectious Diseases  2013;19(8):1222-1230.
Detection of Aichi virus in humans was initially reported in Japan in 1989. To establish a timeline for the prevalence of Aichi virus infection among humans in the Netherlands, we conducted molecular analysis of archival water samples from 1987–2000 and 2009–2012. Aichi virus RNA was detected in 100% (8/8) of sewage samples and 100% (7/7) of surface water samples collected during 1987–2000 and 100% (8/8) of sewage samples and 71% (5/7) of surface water samples collected during 2009–2012. Several genotype A and B Aichi virus lineages were observed over the 25-year period studied, but the time course of viral genetic diversity showed recent expansion of the genotype B population over genotype A. Our results show that Aichi virus has been circulating among the human population in the Netherlands since before its initial detection in humans was reported and that genotype B now predominates in this country.
doi:10.3201/eid1908.130312
PMCID: PMC3739534  PMID: 23876456
Environmental; surveillance; Kobuvirus; Aichivirus; Aichi virus; sewage; surface water; 3C; VP1; PCR; viruses; the Netherlands; gastroenteritis; enteric infections
3.  Ability to cause erythema migrans differs between Borrelia burgdorferi sensu lato isolates 
Parasites & Vectors  2013;6:23.
Background
Lyme borreliosis is a tick-borne disease caused by Borrelia burgdorferi sensu lato. The variety of characteristic and non-specific clinical manifestations is partially explained by its genetic diversity. We investigated the ability of B. burgdorferi sl isolates to cause erythema migrans.
Methods
The genetic constellation of isolates from ticks was compared to isolates found in erythema migrans. PCR and sequence analysis was performed on the plasmid-encoded ospC and the chromosomal 5S-23S rDNA spacer region (IGS).
Results
Seven different B. burgdorferi sl genospecies were identified in 152 borrelia isolates from ticks and erythema migrans biopsies. B afzelii (51%) and B. garinii (27%) were the most common in ticks. From the 44 sequences obtained from erythema migrans samples 42 were B. afzelii, one B. garinii and one B. bavariensis. Significant associations with erythema migrans formation were found for four IGS and two ospC types. Five from 45 ospC types were associated with more than one genospecies.
Conclusions
B. burgdorferi sl isolates differ in their propensity to cause erythema migrans. These differences were also found within genospecies. In other words, although B. afzelii was mostly associated with erythema migrans, some B. afzelii isolates had a low ability to cause erythema migrans. Our data further support the occurrence of plasmid exchange between borrelia genospecies under natural conditions.
doi:10.1186/1756-3305-6-23
PMCID: PMC3599126  PMID: 23339549
Lyme borreliosis; Erythema migrans; Molecular epidemiology; Virulence marker
4.  Spatiotemporal dynamics of emerging pathogens in questing Ixodes ricinus 
Ixodes ricinus transmits Borrelia burgdorferi sensu lato, the etiological agent of Lyme disease. Previous studies have also detected Rickettsia helvetica, Anaplasma phagocytophilum, Neoehrlichia mikurensis, and several Babesia species in questing ticks in The Netherlands. In this study, we assessed the acarological risk of exposure to several tick-borne pathogens (TBPs), in The Netherlands. Questing ticks were collected monthly between 2006 and 2010 at 21 sites and between 2000 and 2009 at one other site. Nymphs and adults were analysed individually for the presence of TBPs using an array-approach. Collated data of this and previous studies were used to generate, for each pathogen, a presence/absence map and to further analyse their spatiotemporal variation. R. helvetica (31.1%) and B. burgdorferi sensu lato (11.8%) had the highest overall prevalence and were detected in all areas. N. mikurensis (5.6%), A. phagocytophilum (0.8%), and Babesia spp. (1.7%) were detected in most, but not all areas. The prevalences of pathogens varied among the study areas from 0 to 64%, while the density of questing ticks varied from 1 to 179/100 m2. Overall, 37% of the ticks were infected with at least one pathogen and 6.3% with more than one pathogen. One-third of the Borrelia-positive ticks were infected with at least one other pathogen. Coinfection of B. afzelii with N. mikurensis and with Babesia spp. occurred significantly more often than single infections, indicating the existence of mutual reservoir hosts. Alternatively, coinfection of R. helvetica with either B. afzelii or N. mikurensis occurred significantly less frequent. The diversity of TBPs detected in I. ricinus in this study and the frequency of their coinfections with B. burgdorferi s.l., underline the need to consider them when evaluating the risks of infection and subsequently the risk of disease following a tick bite.
doi:10.3389/fcimb.2013.00036
PMCID: PMC3726834  PMID: 23908971
vector-borne disease; Borrelia burgdorferi; Candidatus Neoehrlichia mikurensis; Rickettsia helvetica; Rickettsia conorii; Anaplasma phagocytophilum; Babesia; Ixodes ricinus
5.  Circumstantial evidence for an increase in the total number and activity of borrelia-infected ixodes ricinus in the Netherlands 
Parasites & Vectors  2012;5:294.
Background
Between 1994 and 2009, a threefold increase has been observed in consultations of general practitioners for tick bites and Lyme disease in The Netherlands. The objective of this study was to determine whether an increase in the number of questing ticks infected with B. burgdorferi sensu lato is a potential cause of the rise in Lyme disease incidence.
Methods
Historic data on land usage, temperature and wildlife populations were collected and analyzed together with data from two longitudinal field studies on density of questing ticks. Effective population sizes of Borrelia burgdorferi s.l. were calculated.
Results
Long-term trend analyses indicated that the length of the annual tick questing season increased as well as the surface area of tick-suitable habitats in The Netherlands. The overall abundances of feeding and reproductive hosts also increased. Mathematical analysis of the data from the field studies demonstrated an increase in mean densities/activities of questing ticks, particularly of larvae between 2006 and 2009. No increase in infection rate of ticks with Borrelia burgdorferi sensu lato was found. Population genetic analysis of the collected Borrelia species points to an increase in B. afzelii and B. garinii populations.
Conclusions
Together, these findings indicate an increase in the total number of Borrelia-infected ticks, providing circumstantial evidence for an increase in the risk of acquiring a bite of a tick infected with B. burgdorferi s.l. Due to the high spatiotemporal variation of tick densities/activities, long-term longitudinal studies on population dynamics of I. ricinus are necessary to observe significant trends.
doi:10.1186/1756-3305-5-294
PMCID: PMC3562265  PMID: 23244453
Borrelia burgdorferi sensu lato; Ixodes ricinus; Population dynamics; Lyme disease; The Netherlands
6.  Population-based analyses of Giardia duodenalis is consistent with the clonal assemblage structure 
Parasites & Vectors  2012;5:168.
Background
Giardia duodenalis is a common protozoan parasite of humans and animals. Genetic characterization of single loci indicates the existence of eight groups called assemblages, which differ in their host distribution. Molecular analyses challenged the idea that G. duodenalis is a strictly clonal diplomonad by providing evidence of recombination within and between assemblages. Particularly, inter-assemblage recombination events would complicate the interpretation of multi-locus genotyping data from field isolates: where is a host infected with multiple Giardia genotypes or with a single, recombined Giardia genotype.
Methods
Population genetic analyses on the single and multiple-locus level on an extensive dataset of G. duodenalis isolates from humans and animals were performed.
Results
Our analyses indicate that recombination between isolates from different assemblages are apparently very rare or absent in the natural population of Giardia duodenalis. At the multi-locus level, our statistical analyses are more congruent with clonal reproduction and can equally well be explained with the presence of multiple G. duodenalis genotypes within one field isolate.
Conclusions
We conclude that recombination between G. duodenalis assemblages is either very rare or absent. Recombination between genotypes from the same assemblage and genetic exchange between the nuclei of a single cyst needs further investigation.
doi:10.1186/1756-3305-5-168
PMCID: PMC3431248  PMID: 22882997
Giardia lamblia; Giardia intestinalis; Giardia duodenalis; Genetic recombination; Population genetics
7.  European Bat Lyssaviruses, the Netherlands 
Emerging Infectious Diseases  2005;11(12):1854-1859.
Genotype 5 lyssaviruses are endemic in the Netherlands, and can cause fatal infections in humans.
To study European bat lyssavirus (EBLV) in bat reservoirs in the Netherlands, native bats have been tested for rabies since 1984. For all collected bats, data including species, age, sex, and date and location found were recorded. A total of 1,219 serotine bats, Eptesicus serotinus, were tested, and 251 (21%) were positive for lyssavirus antigen. Five (4%) of 129 specimens from the pond bat, Myotis dasycneme, were positive. Recently detected EBLV RNA segments encoding the nucleoprotein were sequenced and analyzed phylogenetically (45 specimens). All recent serotine bat specimens clustered with genotype 5 (EBLV1) sequences, and homologies within subgenotypes EBLV1a and EBLV1b were 99.0%–100% and 99.2%–100%, respectively. Our findings indicate that EBLVs of genotype 5 are endemic in the serotine bat in the Netherlands. Since EBLVs can cause fatal infections in humans, all serotine and pond bats involved in contact incidents should be tested to determine whether the victim was exposed to EBLVs.
doi:10.3201/eid1112.041200
PMCID: PMC3367619  PMID: 16485470
EBLV; lyssavirus; the Netherlands; bat; Eptesicus serotinus; Myotis dasycneme; Europe; research

Results 1-7 (7)