PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (103)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Does the multi-biomarker disease activity score have diagnostic value in early rheumatoid arthritis and unclassified arthritis? 
Annals of the Rheumatic Diseases  2015;74(11):2097-2099.
doi:10.1136/annrheumdis-2015-207911
PMCID: PMC4680142  PMID: 26338034
Early Rheumatoid Arthritis; Disease Activity; Rheumatoid Arthritis
2.  Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis 
Background
CSF-1 or IL-34 stimulation of CSF1R promotes macrophage differentiation, activation and osteoclastogenesis, and pharmacological inhibition of CSF1R is beneficial in animal models of arthritis. The objective of this study was to determine the relative contributions of CSF-1 and IL-34 signaling to CSF1R in RA.
Methods
CSF-1 and IL-34 were detected by immunohistochemical and digital image analysis in synovial tissue from 15 biological-naïve rheumatoid arthritis (RA) , 15 psoriatic arthritis (PsA) and 7 osteoarthritis (OA) patients . Gene expression in CSF-1- and IL-34-differentiated human macrophages was assessed by FACS analysis and quantitative PCR. RA synovial explants were incubated with CSF-1, IL-34, control antibody (Ab), or neutralizing/blocking Abs targeting CSF-1, IL-34, or CSF1R. The effect of a CSF1R-blocking Ab was examined in murine collagen-induced arthritis (CIA).
Results
CSF-1 (also known as M-CSF) and IL-34 expression was similar in RA and PsA synovial tissue, but lower in controls (P < 0.05). CSF-1 expression was observed in the synovial sublining, and IL-34 in the sublining and the intimal lining layer. CSF-1 and IL-34 differentially regulated the expression of 17 of 336 inflammation-associated genes in macrophages, including chemokines, extra-cellular matrix components, and matrix metalloproteinases. Exogenous CSF-1 or IL-34, or their independent neutralization, had no effect on RA synovial explant IL-6 production. Anti-CSF1R Ab significantly reduced IL-6 and other inflammatory mediator production in RA synovial explants, and paw swelling and joint destruction in CIA.
Conclusions
Simultaneous inhibition of CSF1R interactions with both CSF-1 and IL-34 suppresses inflammatory activation of RA synovial tissue and pathology in CIA, suggesting a novel therapeutic strategy for RA.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-016-0973-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s13075-016-0973-6
PMCID: PMC4818474  PMID: 27036883
3.  Smelling the Diagnosis: The Electronic Nose as Diagnostic Tool in Inflammatory Arthritis. A Case-Reference Study 
PLoS ONE  2016;11(3):e0151715.
Objective
To investigate whether exhaled breath analysis using an electronic nose can identify differences between inflammatory joint diseases and healthy controls.
Methods
In a cross-sectional study, the exhaled breath of 21 rheumatoid arthritis (RA) and 18 psoriatic arthritis (PsA) patients with active disease was compared to 21 healthy controls using an electronic nose (Cyranose 320; Smiths Detection, Pasadena, CA, USA). Breathprints were analyzed with principal component analysis, discriminant analysis, and area under curve (AUC) of receiver operating characteristics (ROC) curves. Volatile organic compounds (VOCs) were identified by gas chromatography and mass spectrometry (GC-MS), and relationships between breathprints and markers of disease activity were explored.
Results
Breathprints of RA patients could be distinguished from controls with an accuracy of 71% (AUC 0.75, 95% CI 0.60–0.90, sensitivity 76%, specificity 67%). Breathprints from PsA patients were separated from controls with 69% accuracy (AUC 0.77, 95% CI 0.61–0.92, sensitivity 72%, specificity 71%). Distinction between exhaled breath of RA and PsA patients exhibited an accuracy of 69% (AUC 0.72, 95% CI 0.55–0.89, sensitivity 71%, specificity 72%). There was a positive correlation in RA patients of exhaled breathprints with disease activity score (DAS28) and number of painful joints. GC-MS identified seven key VOCs that significantly differed between the groups.
Conclusions
Exhaled breath analysis by an electronic nose may play a role in differential diagnosis of inflammatory joint diseases. Data from this study warrant external validation.
doi:10.1371/journal.pone.0151715
PMCID: PMC4794231  PMID: 26982569
4.  Towards prevention of autoantibody-positive rheumatoid arthritis: from lifestyle modification to preventive treatment 
Rheumatology (Oxford, England)  2015;55(4):607-614.
Recent advances in research into the earliest phases of RA have provided additional insights into the processes leading from the healthy to the diseased state. These insights have opened the way for the development of preventive strategies for RA, which represents a significant paradigm shift from treatment to prevention and will have major implications for patients as well as society. It would be a huge step forward if clinical signs and symptoms, disability, impaired quality of life and the need for chronic immunosuppressive treatment could be prevented. RA can be seen as a prototypic autoimmune disease, and discoveries about the preclinical diseased state for RA could potentially facilitate research into prevention of other immune-mediated inflammatory diseases such as type 1 diabetes, SLE and multiple sclerosis. This review focuses on the current knowledge of factors contributing to the development of RA and discusses the opportunities for intervention.
doi:10.1093/rheumatology/kev347
PMCID: PMC4795536  PMID: 26374913
rheumatoid arthritis; prevention; treatment; rituximab
5.  MRI assessment of suppression of structural damage in patients with rheumatoid arthritis receiving rituximab: results from the randomised, placebo-controlled, double-blind RA-SCORE study 
Annals of the Rheumatic Diseases  2014;75(1):170-177.
Objective
To evaluate changes in structural damage and joint inflammation assessed by MRI following rituximab treatment in a Phase 3 study of patients with active rheumatoid arthritis (RA) despite methotrexate (MTX) who were naive to biological therapy.
Methods
Patients were randomised to receive two infusions of placebo (n=63), rituximab 500 mg (n=62), or rituximab 1000 mg (n=60) intravenously on days 1 and 15. MRI scans and radiographs of the most inflamed hand and wrist were acquired at baseline, weeks 12 (MRI only), 24 and 52. The primary end point was the change in MRI erosion score from baseline at week 24.
Results
Patients treated with rituximab demonstrated significantly less progression in the mean MRI erosion score compared with those treated with placebo at weeks 24 (0.47, 0.18 and 1.60, respectively, p=0.003 and p=0.001 for the two rituximab doses vs placebo) and 52 (−0.30, 0.11 and 3.02, respectively; p<0.001 and p<0.001). Cartilage loss at 52 weeks was significantly reduced in the rituximab group compared with the placebo group. Other secondary end points of synovitis and osteitis improved significantly with rituximab compared with placebo as early as 12 weeks and improved further at weeks 24 and 52.
Conclusions
This study demonstrated that rituximab significantly reduced erosion and cartilage loss at week 24 and week 52 in MTX-inadequate responder patients with active RA, suggesting that MRI is a valuable tool for assessing inflammatory and structural damage in patients with established RA receiving rituximab.
Trial registration number
NCT00578305
doi:10.1136/annrheumdis-2014-206015
PMCID: PMC4717395  PMID: 25355728
Rheumatoid Arthritis; Magnetic Resonance Imaging; DMARDs (biologic); Inflammation
6.  Serum Vaspin Levels Are Associated with the Development of Clinically Manifest Arthritis in Autoantibody-Positive Individuals 
PLoS ONE  2015;10(12):e0144932.
Objectives
We have previously shown that overweight may increase the risk of developing rheumatoid arthritis (RA) in autoantibody positive individuals. Adipose tissue could contribute to the development of RA by production of various bioactive peptides. Therefore, we examined levels of adipokines in serum and synovial tissue of subjects at risk of RA.
Methods
Fifty-one individuals positive for immunoglobulin M rheumatoid factor (IgM-RF) and/or anti-citrullinated protein antibodies (ACPA), without arthritis, were included in this prospective study. Levels of adiponectin, vaspin, resistin, leptin, chemerin and omentin were determined in baseline fasting serum samples (n = 27). Synovial tissue was obtained by arthroscopy at baseline and we examined the expression of adiponectin, resistin and visfatin by immunohistochemistry.
Results
The development of clinically manifest arthritis after follow-up was associated with baseline serum vaspin levels (HR1.5 (95% CI 1.1 to 2.2); p = 0.020), also after adjustment for overweight (HR1.7 (95% CI 1.1 to 2.5); p = 0.016). This association was not seen for other adipokines. Various serum adipokine levels correlated with BMI (adiponectin r = -0.538, leptin r = 0.664; chemerin r = 0.529) and systemic markers of inflammation such as CRP levels at baseline (adiponectin r = -0.449, omentin r = -0.557, leptin r = 0.635, chemerin r = 0.619, resistin r = 0.520) and ESR (leptin r = 0.512, chemerin r = 0.708), p-value<0.05. Synovial expression of adiponectin, resistin and visfatin was not associated with development of clinically manifest arthritis.
Conclusions
In this exploratory study, serum adipokines were associated with an increased inflammatory state in autoantibody-positive individuals at risk of developing RA. Furthermore, serum vaspin levels may assist in predicting the development of arthritis in these individuals.
doi:10.1371/journal.pone.0144932
PMCID: PMC4682927  PMID: 26670468
7.  Somatic Variation of T-Cell Receptor Genes Strongly Associate with HLA Class Restriction 
PLoS ONE  2015;10(10):e0140815.
Every person carries a vast repertoire of CD4+ T-helper cells and CD8+ cytotoxic T cells for a healthy immune system. Somatic VDJ recombination at genomic loci that encode the T-cell receptor (TCR) is a key step during T-cell development, but how a single T cell commits to become either CD4+ or CD8+ is poorly understood. To evaluate the influence of TCR sequence variation on CD4+/CD8+ lineage commitment, we sequenced rearranged TCRs for both α and β chains in naïve T cells isolated from healthy donors and investigated gene segment usage and recombination patterns in CD4+ and CD8+ T-cell subsets. Our data demonstrate that most V and J gene segments are strongly biased in the naïve CD4+ and CD8+ subsets with some segments increasing the odds of being CD4+ (or CD8+) up to five-fold. These V and J gene associations are highly reproducible across individuals and independent of classical HLA genotype, explaining ~11% of the observed variance in the CD4+ vs. CD8+ propensity. In addition, we identified a strong independent association of the electrostatic charge of the complementarity determining region 3 (CDR3) in both α and β chains, where a positively charged CDR3 is associated with CD4+ lineage and a negatively charged CDR3 with CD8+ lineage. Our findings suggest that somatic variation in different parts of the TCR influences T-cell lineage commitment in a predominantly additive fashion. This notion can help delineate how certain structural features of the TCR-peptide-HLA complex influence thymic selection.
doi:10.1371/journal.pone.0140815
PMCID: PMC4627806  PMID: 26517366
8.  Discovery of Innovative Therapies for Rare Immune-Mediated Inflammatory Diseases via Off-Label Prescription of Biologics: The Case of IL-6 Receptor Blockade in Castleman’s Disease 
Biologics have revolutionized the field of clinical immunology and proven to be both effective and safe in common immune-mediated inflammatory diseases (IMIDs) such as rheumatoid arthritis, inflammatory bowel diseases, and various hematological disorders. However, in patients with rare, severe IMIDs failing on standard therapies, it is virtually impossible to conduct randomized controlled trials. Therefore, biologics are usually prescribed off-label in these often severely ill patients. Unfortunately, off-label prescription is sometimes hampered in these diseases due to a lack of reimbursement that is often based on a presumed lack of evidence for effectiveness. In the present article, we will discuss that off-label prescription of biologics can be a good way to discover new treatments for rare diseases. This will be illustrated using a case of multicentric Castleman’s disease, an immune-mediated lymphoproliferative disorder, in which off-label tocilizumab (humanized anti-IL-6 receptor blocking antibody) treatment resulted in remarkable clinical improvement. Furthermore, we will give recommendations for monitoring efficacy and safety of biologic treatment in rare IMIDs, including the use of registries. In conclusion, we put forward that innovative treatments for rare IMIDs can be discovered via off-label prescription of biologicals, provided that this is based on rational arguments including knowledge of the pathophysiology of the disease.
doi:10.3389/fimmu.2015.00625
PMCID: PMC4676110  PMID: 26697019
giant lymph node hyperplasia; multicentric Castleman’s disease; off-label use; interleukin-6; tocilizumab; biological products; registries
9.  CD55 deposited on synovial collagen fibers protects from immune complex-mediated arthritis 
Introduction
CD55, a glycosylphosphatidylinositol-anchored, complement-regulating protein (decay-accelerating factor), is expressed by fibroblast-like synoviocytes (FLS) with high local abundance in the intimal lining layer. We here explored the basis and consequences of this uncommon presence.
Methods
Synovial tissue, primary FLS cultures, and three-dimensional FLS micromasses were analyzed. CD55 expression was assessed by quantitative polymerase chain reaction (PCR), in situ hybridization, flow cytometry, and immunohistochemistry. Reticular fibers were visualized by Gomori staining and colocalization of CD55 with extracellular matrix (ECM) proteins by confocal microscopy. Membrane-bound CD55 was released from synovial tissue with phospholipase C. Functional consequences of CD55 expression were studied in the K/BxN serum transfer model of arthritis using mice that in addition to CD55 also lack FcγRIIB (CD32), increasing susceptibility for immune complex-mediated pathology.
Results
Abundant CD55 expression seen in FLS of the intimal lining layer was associated with linearly oriented reticular fibers and was resistant to phospholipase C treatment. Expression of CD55 colocalized with collagen type I and III as well as with complement C3. A comparable distribution of CD55 was established in three-dimensional micromasses after ≥3 weeks of culture together with the ECM. CD55 deficiency did not enhance K/BxN serum-induced arthritis, but further exaggerated disease activity in Fcgr2b−/− mice.
Conclusions
CD55 is produced by FLS and deposited on the local collagen fiber meshwork, where it protects the synovial tissue against immune complex-mediated arthritis.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-015-0518-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s13075-015-0518-4
PMCID: PMC4325944  PMID: 25596646
10.  Preclinical Potency and Biodistribution Studies of an AAV 5 Vector Expressing Human Interferon-β (ART-I02) for Local Treatment of Patients with Rheumatoid Arthritis 
PLoS ONE  2015;10(6):e0130612.
Introduction
Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02).
Methods
The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application. ART-I02 expression and bioactivity after transduction was evaluated in fibroblast-like synoviocytes (FLS) from different species. Biodistribution of the vector after local injection was assessed in a rat adjuvant arthritis model through qPCR analysis of vector DNA. In vivo imaging was used to investigate transgene expression and kinetics in a mouse collagen induced arthritis model.
Results
Transduction of RA FLS in vitro with ART-I02 resulted in high expression levels of bioactive hIFN-β. Transduction of FLS from rhesus monkeys, rodents and rabbits with ART-I02 showed high transgene expression, and hIFN-β proved bioactive in FLS from rhesus monkeys. Transgene expression and bioactivity in RA FLS were unaltered in the presence of methotrexate. In vivo, vector biodistribution analysis in rats after intra-articular injection of ART-I02 demonstrated that the majority of vector DNA remained in the joint (>93%). In vivo imaging in mice confirmed local expression of rAAV5 in the knee joint region and demonstrated rapid detectable and sustained expression up until 7 weeks.
Conclusions
These data show that hIFN-β produced by RA FLS transduced with ART-I02 is bioactive and that intra-articular delivery of rAAV5 drives expression of a therapeutic transgene in the joint, with only limited biodistribution of vector DNA to other tissues, supporting progress towards a phase 1 clinical trial for the local treatment of arthritis in patients with RA.
doi:10.1371/journal.pone.0130612
PMCID: PMC4479517  PMID: 26107769
11.  MOR103, a human monoclonal antibody to granulocyte–macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial 
Annals of the Rheumatic Diseases  2014;74(6):1058-1064.
Objectives
To determine the safety, tolerability and signs of efficacy of MOR103, a human monoclonal antibody to granulocyte–macrophage colony-stimulating factor (GM-CSF), in patients with rheumatoid arthritis (RA).
Methods
Patients with active, moderate RA were enrolled in a randomised, multicentre, double-blind, placebo-controlled, dose-escalation trial of intravenous MOR103 (0.3, 1.0 or 1.5 mg/kg) once a week for 4 weeks, with follow-up to 16 weeks. The primary outcome was safety.
Results
Of the 96 randomised and treated subjects, 85 completed the trial (n=27, 24, 22 and 23 for pooled placebo and MOR103 0.3, 1.0 and 1.5 mg/kg, respectively). Treatment emergent adverse events (AEs) in the MOR103 groups were mild or moderate in intensity and generally reported at frequencies similar to those in the placebo group. The most common AE was nasopharyngitis. In two cases, AEs were classified as serious because of hospitalisation: paronychia in a placebo subject and pleurisy in a MOR103 0.3 mg/kg subject. Both patients recovered fully. In exploratory efficacy analyses, subjects in the MOR103 1.0 and 1.5 mg/kg groups showed significant improvements in Disease Activity Score-28 scores and joint counts and significantly higher European League Against Rheumatism response rates than subjects receiving placebo. MOR103 1.0 mg/kg was associated with the largest reductions in disease activity parameters.
Conclusions
MOR103 was well tolerated and showed preliminary evidence of efficacy in patients with active RA. The data support further investigation of this monoclonal antibody to GM-CSF in RA patients and potentially in those with other immune-mediated inflammatory diseases.
Trial registration number
NCT01023256
doi:10.1136/annrheumdis-2013-204816
PMCID: PMC4431325  PMID: 24534756
Rheumatoid Arthritis; DMARDs (biologic); DAS28; Treatment
12.  Inhibition of Osteoclastogenesis and Inflammatory Bone Resorption by Targeting BET Proteins and Epigenetic Regulation 
Nature communications  2014;5:5418.
Emerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that “read” chromatin states by binding to acetylated histones strongly suppresses osteoclastogenesis. I-BET151 suppresses pathologic bone loss in TNF-induced inflammatory osteolysis, inflammatory arthritis, and post-ovariectomy models. Transcriptome analysis identifies a MYC-NFAT axis important for osteoclastogenesis. Mechanistically, I-BET151 inhibits expression of the master osteoclast regulator NFATC1 by suppressing expression and recruitment of its newly identified upstream regulator MYC. MYC is elevated in rheumatoid arthritis and its induction by RANKL is important for osteoclastogenesis and TNF-induced bone resorption. These findings highlight the importance of an I-BET151-inhibited MYC-NFAT axis in osteoclastogenesis, and suggest targeting epigenetic chromatin regulators holds promise for treatment of inflammatory and estrogen deficiency-mediated pathologic bone resorption.
doi:10.1038/ncomms6418
PMCID: PMC4249944  PMID: 25391636
13.  TYK2 Protein-Coding Variants Protect against Rheumatoid Arthritis and Autoimmunity, with No Evidence of Major Pleiotropic Effects on Non-Autoimmune Complex Traits 
PLoS ONE  2015;10(4):e0122271.
Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092 case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and targeted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three protein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A (rs34536443, OR = 0.66, P = 2.3x10-21), A928V (rs35018800, OR = 0.53, P = 1.2x10-9), and I684S (rs12720356, OR = 0.86, P = 4.6x10-7). Second, we show that the same three TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6x10-18), and provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also protect against inflammatory bowel disease (IBD; Pomnibus = 0.005). Finally, in a phenome-wide association study (PheWAS) assessing >500 phenotypes using electronic medical records (EMR) in >29,000 subjects, we found no convincing evidence for association of P1104A and A928V with complex phenotypes other than autoimmune diseases such as RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target for the treatment of autoimmune diseases.
doi:10.1371/journal.pone.0122271
PMCID: PMC4388675  PMID: 25849893
14.  Integration of Sequence Data from a Consanguineous Family with Genetic Data from an Outbred Population Identifies PLB1 as a Candidate Rheumatoid Arthritis Risk Gene 
PLoS ONE  2014;9(2):e87645.
Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G>C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.2×10−6). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted.
doi:10.1371/journal.pone.0087645
PMCID: PMC3919745  PMID: 24520335
15.  Effect of Anti-ApoA-I Antibody-Coating of Stents on Neointima Formation in a Rabbit Balloon-Injury Model 
PLoS ONE  2015;10(3):e0122836.
Background and Aims
Since high-density lipoprotein (HDL) has pro-endothelial and anti-thrombotic effects, a HDL recruiting stent may prevent restenosis. In the present study we address the functional characteristics of an apolipoprotein A-I (ApoA-I) antibody coating in vitro. Subsequently, we tested its biological performance applied on stents in vivo in rabbits.
Materials and Methods
The impact of anti ApoA-I- versus apoB-antibody coated stainless steel discs were evaluated in vitro for endothelial cell adhesion, thrombin generation and platelet adhesion. In vivo, response to injury in the iliac artery of New Zealand white rabbits was used as read out comparing apoA-I-coated versus bare metal stents.
Results
ApoA-I antibody coated metal discs showed increased endothelial cell adhesion and proliferation and decreased thrombin generation and platelet adhesion, compared to control discs. In vivo, no difference was observed between ApoA-I and BMS stents in lumen stenosis (23.3±13.8% versus 23.3±11.3%, p=0.77) or intima surface area (0.81±0.62 mm2 vs 0.84±0.55 mm2, p=0.85). Immunohistochemistry also revealed no differences in cell proliferation, fibrin deposition, inflammation and endothelialization.
Conclusion
ApoA-I antibody coating has potent pro-endothelial and anti-thrombotic effects in vitro, but failed to enhance stent performance in a balloon injury rabbit model in vivo.
doi:10.1371/journal.pone.0122836
PMCID: PMC4378909  PMID: 25821966
16.  Tie2 Signaling Cooperates with TNF to Promote the Pro-Inflammatory Activation of Human Macrophages Independently of Macrophage Functional Phenotype 
PLoS ONE  2014;9(1):e82088.
Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 –differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 –differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.
doi:10.1371/journal.pone.0082088
PMCID: PMC3880273  PMID: 24404127
17.  Histological characteristics of ligament healing after bio-enhanced repair of the transected goat ACL 
Background
Recently, healing of a ruptured anterior cruciate ligament (ACL) is reconsidered. In a previous study, we have shown that the transected ACL can heal after treatment with the triple X locking suture alone or combined with small intestine submucosa (SIS). The first research question of this study was whether the healing ACLs in both groups show histological characteristics that are typical for ligament healing. Secondly, did the combined treatment with SIS lead to improved histological healing, in terms of the morphology of the fibrous synovial layer, the extracellular matrix (ECM), collagen fiber orientation, cellularity, ratio of myofibroblasts, and collagen type 3 staining. The hypothesis was that SIS enhances the healing by the scaffolding effect, endogenous growth factors, and chemoattractants.
Methods
In the Suture group, the left ACL was transected and sutured with the triple X locking suture repair technique. In the Suture-SIS group, the left ACL underwent the same procedure with the addition of SIS. The right ACL served as internal control. Standard histology and immunostaining of α-smooth muscle actin (SMA) and collagen type 3 were used.
Results
Microscopy showed that the fibrous synovial layer around the ACL was reestablished in both groups. The collagen fibers in the Suture-SIS group stained denser, were more compactly arranged, and the ECM contained fewer voids and fat vacuoles. Neovasculature running between the collagen fibers was observed in both experimental groups. Collagen type 3 stained less in the Suture-SIS group. The cellularity in the Suture group, Suture-SIS group and Control was 1265 ± 1034 per mm2, 954 ± 378 per mm2, 254 ± 92, respectively; 49%, 26% and 20% of the cells stain positive for α-SMA, respectively.
Conclusion
The healing ACL in both treated groups showed histological characteristics which are comparable to the spontaneously healing medial collateral ligament and showed that the ACL has a similar intrinsic healing response. Though, no definitive conclusions on the beneficial effects of the SIS scaffold on the healing process can be made.
doi:10.1186/s40634-015-0021-5
PMCID: PMC4544611  PMID: 26914872
Anterior cruciate ligament; Healing; Bio-enhanced ACL repair; Primary repair; Small intestine submucosa
18.  Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? 
The nuclear factor-κB (NF-κB) family of transcription factors is essential for the expression of pro-inflammatory cytokines, but can also induce regulatory pathways. NF-κB can be activated via two distinct pathways: the classical or canonical pathway, and the alternative or non-canonical pathway. It is well established that the canonical NF-κB pathway is essential both in acute inflammatory responses and in chronic inflammatory diseases, including rheumatoid arthritis (RA). Although less extensively studied, the non-canonical NF-κB pathway is not only central in lymphoid organ development and adaptive immune responses, but is also thought to play an important role in the pathogenesis of RA. Importantly, this pathway appears to have cell type-specific functions and, since many different cell types are involved in the pathogenesis of RA, it is difficult to predict the net overall contribution of the non-canonical NF-κB pathway to synovial inflammation. In this review, we describe the current understanding of non-canonical NF-κB signaling in various important cell types in the context of RA and consider the relevance to the pathogenesis of the disease. In addition, we discuss current drugs targeting this pathway, as well as future therapeutic prospects.
doi:10.1186/s13075-015-0527-3
PMCID: PMC4308835  PMID: 25774937
19.  Two Novel α7 Nicotinic Acetylcholine Receptor Ligands: In Vitro Properties and Their Efficacy in Collagen-Induced Arthritis in Mice 
PLoS ONE  2015;10(1):e0116227.
Introduction
The cholinergic anti-inflammatory pathway can downregulate inflammation via the release of acetylcholine (ACh) by the vagus nerve. This neurotransmitter binds to the α7 subunit of nicotinic acetylcholine receptors (α7nAChR), expressed on macrophages and other immune cells. We tested the pharmacological and functional profile of two novel compounds, PMP-311 and PMP-072 and investigated their role in modulating collagen-induced arthritis (CIA) in mice.
Methods
Both compounds were characterized with binding, electrophysiological, and pharmacokinetic studies. For in vivo efficacy studies in the CIA model the compounds were administered daily by oral gavage from day 20 till sacrifice at day 34. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were examined by histology and radiology.
Results
Treatment with PMP-311 was effective in preventing disease onset, reducing clinical signs of arthritis, and reducing synovial inflammation and bone destruction. PMP-072 also showed a trend in arthritis reduction at all concentrations tested. The data showed that while both compounds bind to α7nAChR with high affinity, PMP-311 acts like a classical agonist of ion channel activity, and PMP-072 can actually act as an ion channel antagonist. Moreover, PMP-072 was clearly distinct from typical competitive antagonists, since it was able to act as a silent agonist. It synergizes with the allosteric modulator PNU-120596, and subsequently activates desensitized α7nAChR. However, PMP-072 was less efficacious than PMP-311 at both channel activation and desensitization, suggesting that both conducting and non-conducting states maybe of importance in driving an anti-inflammatory response. Finally, we found that the anti-arthritic effect can be observed despite limited penetration of the central nervous system.
Conclusions
These data provide direct evidence that the α7nAChR in immune cells does not require typical ion channel activation to exert its antiinflammatory effects.
doi:10.1371/journal.pone.0116227
PMCID: PMC4305287  PMID: 25617631
20.  Lessons Learned from Synovial Tissue Analysis 
doi:10.2174/1874312901105010098
PMCID: PMC3263473  PMID: 22279507
21.  Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci 
Nature genetics  2010;42(6):508-514.
To identify novel genetic risk factors for rheumatoid arthritis (RA), we conducted a genome-wide association study (GWAS) meta-analysis of 5,539 autoantibody positive RA cases and 20,169 controls of European descent, followed by replication in an independent set of 6,768 RA cases and 8,806 controls. Of 34 SNPs selected for replication, 7 novel RA risk alleles were identified at genome-wide significance (P<5×10−8) in analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5, and PXK. We also refined the risk alleles at two established RA risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed RA risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P<0.05, many of which are validated autoimmune risk alleles, suggesting that most represent bona fide RA risk alleles.
doi:10.1038/ng.582
PMCID: PMC4243840  PMID: 20453842
22.  Genome-wide association analysis of anti-TNF drug response in rheumatoid arthritis patients 
Annals of the rheumatic diseases  2012;72(8):1375-1381.
Background
Treatment strategies blocking tumor necrosis factor (anti-TNF) have proven very successful in patients with rheumatoid arthritis (RA). However, a significant subset of patients does not respond for unknown reasons. Currently there are no means of identifying these patients prior to treatment. This study was aimed at identifying genetic factors predicting anti-TNF treatment outcome in patient with RA using a genome-wide association approach.
Methods
We conducted a multi-stage, genome-wide association study with a primary analysis of 2,557,253 single nucleotide polymorphisms (SNPs) in 882 RA patients receiving anti-TNF therapy included through the Dutch Rheumatoid Arthritis Monitoring (DREAM) registry and the database of Apotheekzorg. Linear regression analysis of changes in the Disease Activity Score in 28 joints after 14 weeks of treatment was performed using an additive model. Markers with a p<10−3 were selected for replication in 1,821 RA patients from three independent cohorts. Pathway analysis including all SNPs with a p-value < 10−3 was performed using Ingenuity.
Results
Seven hundred seventy two markers demonstrated evidence of association with treatment outcome in the initial stage. Eight genetic loci showed improved p-value in the overall meta-analysis compared to the first stage, three of which (rs1568885, rs1813443 and rs4411591) showed directional consistency over all four studied cohorts. We were unable to replicate markers previously reported to be associated with anti-TNF outcome. Network analysis indicated strong involvement of biological processes underlying inflammatory response and cell morphology.
Conclusion
Using a multi-stage strategy, we have identified 8 genetic loci associated with response to anti-TNF treatment. Further studies are required to validate these findings in additional patient collections.
doi:10.1136/annrheumdis-2012-202405
PMCID: PMC4169706  PMID: 23233654
anti-TNF; gene polymorphism; pharmacogenetics; rheumatoid arthritis; genome-wide association study
23.  From Synovial Tissue to Peripheral Blood: Myeloid Related Protein 8/14 Is a Sensitive Biomarker for Effective Treatment in Early Drug Development in Patients with Rheumatoid Arthritis 
PLoS ONE  2014;9(8):e106253.
Objective
The change in number of CD68-positive sublining macrophages in serial synovial biopsies has been successfully used to discriminate on the group level between effective and ineffective treatment during early drug development in rheumatoid arthritis (RA) patients. Measurement of a soluble biomarker would clearly have practical advantages. Therefore, we investigated the sensitivity to change of myeloid related protein (MRP)8/14 in serum.
Methods
139 RA patients who received known effective biologics (infliximab, adalimumab and rituximab) and 28 RA patients who received placebo/ineffective therapies were included. MRP8/14 levels were analyzed in baseline and follow-up serum samples and the standardized response mean (SRM) was calculated to determine the sensitivity to change of MRP8/14 in comparison to C-reactive protein (CRP) levels and the disease activity score evaluated in 28 joints (DAS28).
Results
In patients treated with effective treatment, the SRM for MRP8/14 was moderate (0.56), but in patients treated with placebo/ineffective treatment the SRM was 0.06, suggesting that this biomarker is perhaps not susceptible to placebo effects in proof-of-concept studies of relatively short duration. In contrast, the SRM for DAS28 was high for effective treatment (1.07), but also moderate for ineffective treatment (0.58), representing the placebo effect. The SRM for CRP was low in the effective (0.33) and ineffective (0.23) treatment groups.
Conclusion
These data support the notion that quantification of changes in MRP8/14 serum levels could be used to predict potential efficacy of novel antirheumatic drugs in an early stage of drug development. A positive result would support the rationale for larger, conventional clinical trials to determine whether the effects are clinically relevant.
doi:10.1371/journal.pone.0106253
PMCID: PMC4148438  PMID: 25166859
24.  Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy? 
Introduction
Accumulating evidence suggests an important role for interleukin 17 (IL-17) in the pathogenesis of several inflammatory diseases, including rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Accordingly, clinical trials aimed at blocking IL-17 have been initiated, but clinical results between patients and across different diseases have been highly variable. The objective was to determine the variability in expression of IL-17A, IL-17F and their receptors IL-17RA and IL-17RC in the synovia of patients with arthritis.
Methods
Synovial biopsies were obtained from patients with RA (n = 11), PsA (n = 15) and inflammatory osteoarthritis (OA, n = 14). For comparison, synovia from noninflamed knee joints (n = 7) obtained from controls were included. Frozen sections were stained for IL-17A, IL-17F, IL-17RA and IL-17RC and evaluated by digital image analysis. We used confocal microscopy to determine which cells in the synovium express IL-17A and IL-17F, double-staining with CD4, CD8, CD15, CD68, CD163, CD31, von Willebrand factor, peripheral lymph node address in, lymphatic vessel endothelial hyaluronan receptor 1, mast cell tryptase and retinoic acid receptor–related orphan receptor γt (RORγt).
Results
IL-17A, IL-17F, IL-17RA and IL-17RC were abundantly expressed in synovial tissues of all patient groups. Whereas IL-17RA was present mostly in the synovial sublining, IL-17RC was abundantly expressed in the intimal lining layer. Digital image analysis showed a significant (P < 0.05) increase of only IL-17A in arthritis patients compared to noninflamed control tissues. The expression of IL-17A, IL-17F and their receptors was similar in the different patient groups, but highly variable between individual patients. CD4+ and CD8+ cells coexpressed IL-17A, and few cells coexpressed IL-17F. IL-17A and IL-17F were not expressed by CD15+ neutrophils. Mast cells were only occasionally positive for IL-17A or IL-17F. Interestingly, IL-17A and IL-17F staining was also observed in macrophages, as well as in blood vessels and lymphatics. This staining probably reflects receptor-bound cytokine staining. Many infiltrated cells were positive for the transcription factor RORγt. Colocalisation between RORγt and IL-17A and IL-17F indicates local IL-17 production.
Conclusions
Increased expression of IL-17A is not restricted to synovial tissues of RA and PsA patients; it is also observed in inflammatory OA. The heterogeneous expression levels may explain nonresponse to anti-IL-17 therapy in subsets of patients.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-014-0426-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s13075-014-0426-z
PMCID: PMC4292832  PMID: 25146432
25.  Genetics of rheumatoid arthritis contributes to biology and drug discovery 
Okada, Yukinori | Wu, Di | Trynka, Gosia | Raj, Towfique | Terao, Chikashi | Ikari, Katsunori | Kochi, Yuta | Ohmura, Koichiro | Suzuki, Akari | Yoshida, Shinji | Graham, Robert R. | Manoharan, Arun | Ortmann, Ward | Bhangale, Tushar | Denny, Joshua C. | Carroll, Robert J. | Eyler, Anne E. | Greenberg, Jeffrey D. | Kremer, Joel M. | Pappas, Dimitrios A. | Jiang, Lei | Yin, Jian | Ye, Lingying | Su, Ding-Feng | Yang, Jian | Xie, Gang | Keystone, Ed | Westra, Harm-Jan | Esko, Tõnu | Metspalu, Andres | Zhou, Xuezhong | Gupta, Namrata | Mirel, Daniel | Stahl, Eli A. | Diogo, Dorothée | Cui, Jing | Liao, Katherine | Guo, Michael H. | Myouzen, Keiko | Kawaguchi, Takahisa | Coenen, Marieke J.H. | van Riel, Piet L.C.M. | van de Laar, Mart A.F.J. | Guchelaar, Henk-Jan | Huizinga, Tom W.J. | Dieudé, Philippe | Mariette, Xavier | Bridges, S. Louis | Zhernakova, Alexandra | Toes, Rene E.M. | Tak, Paul P. | Miceli-Richard, Corinne | Bang, So-Young | Lee, Hye-Soon | Martin, Javier | Gonzalez-Gay, Miguel A. | Rodriguez-Rodriguez, Luis | Rantapää-Dahlqvist, Solbritt | Ärlestig, Lisbeth | Choi, Hyon K. | Kamatani, Yoichiro | Galan, Pilar | Lathrop, Mark | Eyre, Steve | Bowes, John | Barton, Anne | de Vries, Niek | Moreland, Larry W. | Criswell, Lindsey A. | Karlson, Elizabeth W. | Taniguchi, Atsuo | Yamada, Ryo | Kubo, Michiaki | Liu, Jun S. | Bae, Sang-Cheol | Worthington, Jane | Padyukov, Leonid | Klareskog, Lars | Gregersen, Peter K. | Raychaudhuri, Soumya | Stranger, Barbara E. | De Jager, Philip L. | Franke, Lude | Visscher, Peter M. | Brown, Matthew A. | Yamanaka, Hisashi | Mimori, Tsuneyo | Takahashi, Atsushi | Xu, Huji | Behrens, Timothy W. | Siminovitch, Katherine A. | Momohara, Shigeki | Matsuda, Fumihiko | Yamamoto, Kazuhiko | Plenge, Robert M.
Nature  2013;506(7488):376-381.
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 1012–4. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci (cis-eQTL)6, and pathway analyses7–9 – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
doi:10.1038/nature12873
PMCID: PMC3944098  PMID: 24390342

Results 1-25 (103)