PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Trend analysis of Trichinella in a red fox population from a low endemic area using a validated artificial digestion and sequential sieving technique 
Veterinary Research  2014;45(1):120.
Freezing of fox carcasses to minimize professional hazard of infection with Echinococcus multilocularis is recommended in endemic areas, but this could influence the detection of Trichinella larvae in the same host species. A method based on artificial digestion of frozen fox muscle, combined with larva isolation by a sequential sieving method (SSM), was validated using naturally infected foxes from Latvia. The validated SSM was used to detect dead Trichinella muscle larvae (ML) in frozen muscle samples of 369 red foxes from the Netherlands, of which one fox was positive (0.067 larvae per gram). This result was compared with historical Trichinella findings in Dutch red foxes. Molecular analysis using 5S PCR showed that both T. britovi and T. nativa were present in the Latvian foxes, without mixed infections. Of 96 non-frozen T. britovi ML, 94% was successfully sequenced, whereas this was the case for only 8.3% of 72 frozen T. britovi ML. The single Trichinella sp. larva that was recovered from the positive Dutch fox did not yield PCR product, probably due to severe freeze-damage. In conclusion, the SSM presented in this study is a fast and effective method to detect dead Trichinella larvae in frozen meat. We showed that the Trichinella prevalence in Dutch red fox was 0.27% (95% CI 0.065-1.5%), in contrast to 3.9% in the same study area fifteen years ago. Moreover, this study demonstrated that the efficacy of 5S PCR for identification of Trichinella britovi single larvae from frozen meat is not more than 8.3%.
doi:10.1186/s13567-014-0120-9
PMCID: PMC4245726  PMID: 25431178
2.  Predicting Tick Presence by Environmental Risk Mapping 
Public health statistics recorded an increasing trend in the incidence of tick bites and erythema migrans (EM) in the Netherlands. We investigated whether the disease incidence could be predicted by a spatially explicit categorization model, based on environmental factors and a training set of tick absence–presence data. Presence and absence of Ixodes ricinus were determined by the blanket-dragging method at numerous sites spread over the Netherlands. The probability of tick presence on a 1 km by 1 km square grid was estimated from the field data using a satellite-based methodology. Expert elicitation was conducted to provide a Bayesian prior per landscape type. We applied a linear model to test for a linear relationship between incidence of EM consultations by general practitioners in the Netherlands and the estimated probability of tick presence. Ticks were present at 252 distinct sampling coordinates and absent at 425. Tick presence was estimated for 54% of the total land cover. Our model has predictive power for tick presence in the Netherlands, tick-bite incidence per municipality correlated significantly with the average probability of tick presence per grid. The estimated intercept of the linear model was positive and significant. This indicates that a significant fraction of the tick-bite consultations could be attributed to the I. ricinus population outside the resident municipality.
doi:10.3389/fpubh.2014.00238
PMCID: PMC4244977  PMID: 25505781
lyme; risk mapping; ticks; Borrelia
3.  A Model for the Early Identification of Sources of Airborne Pathogens in an Outdoor Environment 
PLoS ONE  2013;8(12):e80412.
Background
Source identification in areas with outbreaks of airborne pathogens is often time-consuming and expensive. We developed a model to identify the most likely location of sources of airborne pathogens.
Methods
As a case study, we retrospectively analyzed three Q fever outbreaks in the Netherlands in 2009, each with suspected exposure from a single large dairy goat farm. Model input consisted only of case residential addresses, day of first clinical symptoms, and human population density data. We defined a spatial grid and fitted an exponentially declining function to the incidence-distance data of each grid point. For any grid point with a fit significant at the 95% confidence level, we calculated a measure of risk. For validation, we used results from abortion notifications, voluntary (2008) and mandatory (2009) bulk tank milk sampling at large (i.e. >50 goats and/or sheep) dairy farms, and non-systematic vaginal swab sampling at large and small dairy and non-dairy goat/sheep farms. In addition, we performed a two-source simulation study.
Results
Hotspots – areas most likely to contain the actual source – were identified at early outbreak stages, based on the earliest 2–10% of the case notifications. Distances between the hotspots and suspected goat farms varied from 300–1500 m. In regional likelihood rankings including all large dairy farms, the suspected goat farms consistently ranked first. The two-source simulation study showed that detection of sources is most clear if the distance between the sources is either relatively small or relatively large.
Conclusions
Our model identifies the most likely location of sources in an airborne pathogen outbreak area, even at early stages. It can help to reduce the number of potential sources to be investigated by microbial testing and to allow rapid implementation of interventions to limit the number of human infections and to reduce the risk of source-to-source transmission.
doi:10.1371/journal.pone.0080412
PMCID: PMC3850919  PMID: 24324598
4.  Population-based analyses of Giardia duodenalis is consistent with the clonal assemblage structure 
Parasites & Vectors  2012;5:168.
Background
Giardia duodenalis is a common protozoan parasite of humans and animals. Genetic characterization of single loci indicates the existence of eight groups called assemblages, which differ in their host distribution. Molecular analyses challenged the idea that G. duodenalis is a strictly clonal diplomonad by providing evidence of recombination within and between assemblages. Particularly, inter-assemblage recombination events would complicate the interpretation of multi-locus genotyping data from field isolates: where is a host infected with multiple Giardia genotypes or with a single, recombined Giardia genotype.
Methods
Population genetic analyses on the single and multiple-locus level on an extensive dataset of G. duodenalis isolates from humans and animals were performed.
Results
Our analyses indicate that recombination between isolates from different assemblages are apparently very rare or absent in the natural population of Giardia duodenalis. At the multi-locus level, our statistical analyses are more congruent with clonal reproduction and can equally well be explained with the presence of multiple G. duodenalis genotypes within one field isolate.
Conclusions
We conclude that recombination between G. duodenalis assemblages is either very rare or absent. Recombination between genotypes from the same assemblage and genetic exchange between the nuclei of a single cyst needs further investigation.
doi:10.1186/1756-3305-5-168
PMCID: PMC3431248  PMID: 22882997
Giardia lamblia; Giardia intestinalis; Giardia duodenalis; Genetic recombination; Population genetics
5.  Small risk of developing symptomatic tick-borne diseases following a tick bite in the Netherlands 
Parasites & Vectors  2011;4:17.
Background
In The Netherlands, the incidence of Lyme borreliosis is on the rise. Besides its causative agent, Borrelia burgdorferi s.l., other potential pathogens like Rickettsia, Babesia and Ehrlichia species are present in Ixodes ricinus ticks. The risk of disease associated with these microorganisms after tick-bites remains, however, largely unclear. A prospective study was performed to investigate how many persons with tick-bites develop localized or systemic symptoms and whether these are associated with tick-borne microorganisms.
Results
In total, 297 Ixodes ricinus ticks were collected from 246 study participants who consulted a general practitioner on the island of Ameland for tick bites. Ticks were subjected to PCR to detect DNA of Borrelia burgdorferi s.l., Rickettsia spp., Babesia spp. or Ehrlichia/Anaplasma spp.. Sixteen percent of the collected ticks were positive for Borrelia burgdorferi s.l., 19% for Rickettsia spp., 12% for Ehrlichia/Anaplasma spp. and 10% for Babesia spp.. At least six months after the tick bite, study participants were interviewed on symptoms by means of a standard questionnaire. 14 out of 193 participants (8.3%) reported reddening at the bite site and 6 participants (4.1%) reported systemic symptoms. No association between symptoms and tick-borne microorganisms was found. Attachment duration ≥24 h was positively associated with reddening at the bite site and systemic symptoms. Using logistic regression techniques, reddening was positively correlated with presence of Borrelia afzelii, and having 'any symptoms' was positively associated with attachment duration.
Conclusion
The risk of contracting acute Lyme borreliosis, rickettsiosis, babesiosis or ehrlichiosis from a single tick bite was <1% in this study population.
doi:10.1186/1756-3305-4-17
PMCID: PMC3050846  PMID: 21310036
6.  Age-Related Toxoplasma gondii Seroprevalence in Dutch Wild Boar Inconsistent with Lifelong Persistence of Antibodies 
PLoS ONE  2011;6(1):e16240.
Toxoplasma gondii is an important zoonotic pathogen that is best known as a cause of abortion or abnormalities in the newborn after primary infection during pregnancy. Our aim was to determine the prevalence of T. gondii in wild boar to investigate the possible role of their meat in human infection and to get an indication of the environmental contamination with T. gondii. The presence of anti-T. gondii antibodies was determined by in-house ELISA in 509 wild boar shot in 2002/2003 and 464 wild boar shot in 2007. Most of the boar originated from the “Roerstreek” (n = 673) or the “Veluwe” (n = 241). A binormal mixture model was fitted to the log-transformed optical density values for wild boar up to 20 months old to estimate the optimal cut-off value (−0.685) and accompanying sensitivity (90.6%) and specificity (93.6%). The overall seroprevalence was estimated at 24.4% (95% CI: 21.1–27.7%). The prevalence did not show variation between sampling years or regions, indicating a stable and homogeneous infection pressure from the environment. The relation between age and seroprevalence was studied in two stages. Firstly, seroprevalence by age group was determined by fitting the binary mixture model to 200 animals per age category. The prevalence showed a steep increase until approximately 10 months of age but stabilized at approximately 35% thereafter. Secondly, we fitted the age-dependent seroprevalence data to several SIR-type models, with seropositives as infected (I) and seronegatives as either susceptible (S) or resistant (R). A model with a recovery rate (SIS) was superior to a model without a recovery rate (SI). This finding is not consistent with the traditional view of lifelong persistence of T. gondii infections. The high seroprevalence suggests that eating undercooked wild boar meat may pose a risk of infection with T. gondii.
doi:10.1371/journal.pone.0016240
PMCID: PMC3024411  PMID: 21283764

Results 1-6 (6)