PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Hydantoin Transport Protein from Microbacterium liquefaciens 
Journal of Bacteriology  2006;188(9):3329-3336.
The gene hyuP from Microbacterium liquefaciens AJ 3912 with an added His6 tag was cloned into the expression plasmid pTTQ18 in an Escherichia coli host strain. The transformed E. coli showed transport of radioisotope-labeled 5-substituted hydantoins with apparent Km values in the micromolar range. This activity exhibited a pH optimum of 6.6 and was inhibited by dinitrophenol, indicating the requirement of energy for the transport system. 5-Indolyl methyl hydantoin and 5-benzyl hydantoin were the preferred substrates, with selectivity for a hydrophobic substituent in position 5 of hydantoin and for the l isomer over the d isomer. Hydantoins with less hydrophobic substituents, cytosine, thiamine, uracil, allantoin, adenine, and guanine, were not effective ligands. The His-tagged hydantoin transport protein was located in the inner membrane fraction, from which it was solubilized and purified and its identity was authenticated.
doi:10.1128/JB.188.9.3329-3336.2006
PMCID: PMC1447452  PMID: 16621827
2.  Development of a Novel, Fully-Automated Genotyping System: Principle and Applications 
Sensors (Basel, Switzerland)  2012;12(12):16614-16627.
Genetic testing prior to treatment, pharmacogenetic analysis, is key to realizing personalized medicine which is a topic that has attracted much attention recently. Through the optimization of therapy selection and dosage, a reduction in side effects is expected. Genetic testing has been conducted as a type of pharmacogenetic analysis in recent years, but it faces challenges in terms of cost effectiveness and its complicated procedures. Here we report on the development of a novel platform for genetic testing, the i-densy™, with the use of quenching probe system (QP-system) as principle of mutant detection. The i-densy™ automatically performs pre-treatment, PCR and detection to provide the test result from whole blood and extracted DNA within approximately 90 and 60 min, respectively. Integration of all steps into a single platform greatly reduces test time and complicated procedures. An even higher-precision genetic analysis has been achieved through the development of novel and highly-specific detection methods. The applications of items measured using the i-densy™ are diverse, from single nucleotide polymorphism (SNP), such as CYP2C19 and UGT1A1, to somatic mutations associated with cancer, such as EGFR, KRAS and JAK2. The i-densy™ is a useful tool for optimization of anticancer drug therapy and can contribute to personalized medicine.
doi:10.3390/s121216614
PMCID: PMC3571800  PMID: 23208557
automated genotyping system; pharmacogenetic analysis; single nucleotide polymorphism; i-densy™; Qprobe; mutation biased PCR; personalized medicine
3.  Crystallization of the hydantoin transporter Mhp1 from Microbacterium liquefaciens  
Mhp1, a hydantoin transporter from M. liquefaciens, was purified and crystallized. Diffraction data were collected to 2.85 Å resolution; the crystal belonged to the orthorhombic space group P212121.
The integral membrane protein Mhp1 from Microbacterium liquefaciens transports hydantoins and belongs to the nucleobase:cation symporter 1 family. Mhp1 was successfully purified and crystallized. Initial crystals were obtained using the hanging-drop vapour-diffusion method but diffracted poorly. Optimization of the crystallization conditions resulted in the generation of orthorhombic crystals (space group P212121, unit-cell parameters a = 79.7, b = 101.1, c = 113.8 Å). A complete data set has been collected from a single crystal to a resolution of 2.85 Å with 64 741 independent observations (94% complete) and an R merge of 0.12. Further experimental phasing methods are under way.
doi:10.1107/S1744309108036920
PMCID: PMC2593711  PMID: 19052379
transporters; nucleobase:cation symporter 1 family; membrane proteins; hydantoins
4.  Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter 
Science (New York, N.Y.)  2008;322(5902):709-713.
The ‘Nucleobase-Cation-Symport-1’, NCS1, transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85 Å resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, ten of which are arranged in two inverted repeats of 5 helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine (LeuTAa) and the galactose (vSGLT) transporters reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronised by the inverted repeat helices 3 and 8, providing the structural basis of the ‘alternating access’ model for membrane transport.
doi:10.1126/science.1164440
PMCID: PMC2885439  PMID: 18927357
5.  The gusBC Genes of Escherichia coli Encode a Glucuronide Transport System 
Journal of Bacteriology  2005;187(7):2377-2385.
Two genes, gusB and gusC, from a natural fecal isolate of Escherichia coli are shown to encode proteins responsible for transport of β-glucuronides with synthetic [14C]phenyl-1-thio-β-d-glucuronide as the substrate. These genes are located in the gus operon downstream of the gusA gene on the E. coli genome, and their expression is induced by a variety of β-d-glucuronides. Measurements of transport in right-side-out subcellular vesicles show the system has the characteristics of secondary active transport energized by the respiration-generated proton motive force. When the genes were cloned together downstream of the tac operator-promoter in the plasmid pTTQ18 expression vector, transport activity was increased considerably with isopropylthiogalactopyranoside as the inducer. Amplified expression of the GusB and GusC proteins enabled visualization and identification by N-terminal sequencing of both proteins, which migrated at ca. 32 kDa and 44 kDa, respectively. Separate expression of the GusB protein showed that it is essential for glucuronide transport and is located in the inner membrane, while the GusC protein does not catalyze transport but assists in an as yet unknown manner and is located in the outer membrane. The output of glucuronides as waste by mammals and uptake for nutrition by gut bacteria or reabsorption by the mammalian host is discussed.
doi:10.1128/JB.187.7.2377-2385.2005
PMCID: PMC1065211  PMID: 15774881

Results 1-5 (5)