Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The Hydantoin Transport Protein from Microbacterium liquefaciens 
Journal of Bacteriology  2006;188(9):3329-3336.
The gene hyuP from Microbacterium liquefaciens AJ 3912 with an added His6 tag was cloned into the expression plasmid pTTQ18 in an Escherichia coli host strain. The transformed E. coli showed transport of radioisotope-labeled 5-substituted hydantoins with apparent Km values in the micromolar range. This activity exhibited a pH optimum of 6.6 and was inhibited by dinitrophenol, indicating the requirement of energy for the transport system. 5-Indolyl methyl hydantoin and 5-benzyl hydantoin were the preferred substrates, with selectivity for a hydrophobic substituent in position 5 of hydantoin and for the l isomer over the d isomer. Hydantoins with less hydrophobic substituents, cytosine, thiamine, uracil, allantoin, adenine, and guanine, were not effective ligands. The His-tagged hydantoin transport protein was located in the inner membrane fraction, from which it was solubilized and purified and its identity was authenticated.
PMCID: PMC1447452  PMID: 16621827
2.  Lack of calcium oscillation causes failure of oocyte activation after intracytoplasmic sperm injection in pigs 
In pigs, the efficiency of embryo production after intracytoplasmic sperm injection (ICSI) is still low because of frequent failure of normal fertilization, which involves formation of two polar bodies and two pronuclei. To clarify the reasons for this, we hypothesized that ICSI does not properly trigger sperm-induced fertilization events, especially intracellular Ca2+ signaling, also known as Ca2+ oscillation. We also suspected that the use of in vitro-matured oocytes might negatively affect fertilization events and embryonic development of sperm-injected oocytes. Therefore, we compared the patterns of Ca2+ oscillation, the efficiency of oocyte activation and normal fertilization, and embryo development to the blastocyst stage among in vivo- or in vitro-matured oocytes after ICSI or in vitro fertilization (IVF). Unexpectedly, we found that the pattern of Ca2+ oscillation, such as the frequency and amplitude of Ca2+ rises, in oocytes after ICSI was similar to that in oocytes after IVF, irrespective of the oocyte source. However, half of the oocytes failed to become activated after ICSI and showed no Ca2+ oscillation. Moreover, the embryonic development of normal fertilized oocytes was reduced when in vitro-matured oocytes were used, irrespective of the fertilization method employed. These findings suggest that low embryo production efficiency after ICSI is attributable mainly to poor developmental ability of in vitro-matured oocytes and a lack of Ca2+ oscillation, rather than the pattern of oscillation.
PMCID: PMC5177980  PMID: 27725347
Ca2+ oscillation; Fertilization; Intracytoplasmic sperm injection; Phospholipase C-ζ; Pig
3.  Efficient pig ICSI using Percoll-selected spermatozoa; evidence for the essential role of phospholipase C-ζ in ICSI success 
In pigs, the damaged sperm membrane leads to leakage of phospholipase C-ζ (PLCζ), which has been identified as a sperm factor, and a reduction of oocyte-activating ability. In this study, we investigated whether sperm selected by Percoll gradient centrifugation (Percoll) have sufficient PLCζ, and whether the efficiency of fertilization and blastocyst formation after intracytoplasmic sperm injection (ICSI) using Percoll-selected sperm can be improved. Percoll-selected sperm (Percoll group) or sperm without Percoll selection (Control group) were used. A proportion of the oocytes injected with control sperm were subjected to electrical stimulation at 1 h after ICSI (Cont + ES group). It was found that the Percoll group showed a large amount of PLCζ in comparison with the Control group. Furthermore, application of Percoll-selected sperm for ICSI increased the efficiency of fertilization and embryo development. Thus, these results indicate the Percoll-selected sperm have sufficient PLCζ and high oocyte-activating ability after ICSI in pigs.
PMCID: PMC5177984  PMID: 27725346
Fertilization; Intracytoplasmic sperm injection; Oocyte activation; Pig
4.  Ganglioside GM3 is essential for the structural integrity and function of cochlear hair cells 
Human Molecular Genetics  2015;24(10):2796-2807.
GM3 synthase (ST3GAL5) is the first biosynthetic enzyme of a- and b-series gangliosides. Patients with GM3 synthase deficiency suffer severe neurological disability and deafness. Eight children (ages 4.1 ± 2.3 years) homozygous for ST3GAL5 c.694C>T had no detectable GM3 (a-series) or GD3 (b-series) in plasma. Their auditory function was characterized by the absence of middle ear muscle reflexes, distortion product otoacoustic emissions and cochlear microphonics, as well as abnormal auditory brainstem responses and cortical auditory-evoked potentials. In St3gal5−/− mice, stereocilia of outer hair cells showed signs of degeneration as early as postnatal Day 3 (P3); thereafter, blebs devoid of actin or tubulin appeared at the region of vestigial kinocilia, suggesting impaired vesicular trafficking. Stereocilia of St3gal5−/− inner hair cells were fused by P17, and protein tyrosine phosphatase receptor Q, normally linked to myosin VI at the tapered base of stereocilia, was maldistributed along the cell membrane. B4galnt1−/− (GM2 synthase-deficient) mice expressing only GM3 and GD3 gangliosides had normal auditory structure and function. Thus, GM3-dependent membrane microdomains might be essential for the proper organization and maintenance of stereocilia in auditory hair cells.
PMCID: PMC4425844  PMID: 25652401
5.  A novel approach to detect KRAS/BRAF mutation for colon cancer: Highly sensitive simultaneous detection of mutations and simple pre-treatment without DNA extraction 
It has been reported that colon cancer patients with KRAS and BRAF mutations that lie downstream of epidermal growth factor receptor (EGFR) acquire resistance against therapy with anti-EGFR antibodies, cetuximab and panitumumab. On the other hand, some reports say KRAS codon 13 mutation (p.G13D) has lower resistance against anti-EGFR antibodies, thus there is a substantial need for detection of specific KRAS mutations. We have established a state-of-theart measurement system using QProbe (QP) method that allows simultaneous measurement of KRAS codon 12/13, p.G13D and BRAF mutation, and compared this method against Direct Sequencing (DS) using 182 specimens from colon cancer patients. In addition, 32 biopsy specimens were processed with a novel pre-treatment method without DNA purification in order to detect KRAS/BRAF. As a result of KRAS mutation measurement, concordance rate between the QP method and DS method was 81.4% (144/177) except for the 5 specimens that were undeterminable. Among them, 29 specimens became positive with QP method and negative with DS method. BRAF was measured with QP method only, and the mutation detection rate was 3.9% (6/153). KRAS measurement using a simple new pre-treatment method without DNA extraction resulted in 31 good results out of 32, all of them matching with the DS method. We have established a simple but highly sensitive simultaneous detection system for KRAS/BRAF. Moreover, introduction of the novel pre-treatment technology eliminated the inconvenient DNA extraction process. From this research achievement, we not only anticipate quick and accurate results returned in the clinical field but also contribution in improving the test quality and work efficiency.
PMCID: PMC4485654  PMID: 25936694
colon cancer; KRAS mutation; BRAF mutation; QProbe method
6.  Development of a Novel, Fully-Automated Genotyping System: Principle and Applications 
Sensors (Basel, Switzerland)  2012;12(12):16614-16627.
Genetic testing prior to treatment, pharmacogenetic analysis, is key to realizing personalized medicine which is a topic that has attracted much attention recently. Through the optimization of therapy selection and dosage, a reduction in side effects is expected. Genetic testing has been conducted as a type of pharmacogenetic analysis in recent years, but it faces challenges in terms of cost effectiveness and its complicated procedures. Here we report on the development of a novel platform for genetic testing, the i-densy™, with the use of quenching probe system (QP-system) as principle of mutant detection. The i-densy™ automatically performs pre-treatment, PCR and detection to provide the test result from whole blood and extracted DNA within approximately 90 and 60 min, respectively. Integration of all steps into a single platform greatly reduces test time and complicated procedures. An even higher-precision genetic analysis has been achieved through the development of novel and highly-specific detection methods. The applications of items measured using the i-densy™ are diverse, from single nucleotide polymorphism (SNP), such as CYP2C19 and UGT1A1, to somatic mutations associated with cancer, such as EGFR, KRAS and JAK2. The i-densy™ is a useful tool for optimization of anticancer drug therapy and can contribute to personalized medicine.
PMCID: PMC3571800  PMID: 23208557
automated genotyping system; pharmacogenetic analysis; single nucleotide polymorphism; i-densy™; Qprobe; mutation biased PCR; personalized medicine
7.  Crystallization of the hydantoin transporter Mhp1 from Microbacterium liquefaciens  
Mhp1, a hydantoin transporter from M. liquefaciens, was purified and crystallized. Diffraction data were collected to 2.85 Å resolution; the crystal belonged to the orthorhombic space group P212121.
The integral membrane protein Mhp1 from Microbacterium liquefaciens transports hydantoins and belongs to the nucleobase:cation symporter 1 family. Mhp1 was successfully purified and crystallized. Initial crystals were obtained using the hanging-drop vapour-diffusion method but diffracted poorly. Optimization of the crystallization conditions resulted in the generation of orthorhombic crystals (space group P212121, unit-cell parameters a = 79.7, b = 101.1, c = 113.8 Å). A complete data set has been collected from a single crystal to a resolution of 2.85 Å with 64 741 independent observations (94% complete) and an R merge of 0.12. Further experimental phasing methods are under way.
PMCID: PMC2593711  PMID: 19052379
transporters; nucleobase:cation symporter 1 family; membrane proteins; hydantoins
8.  Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter 
Science (New York, N.Y.)  2008;322(5902):709-713.
The ‘Nucleobase-Cation-Symport-1’, NCS1, transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85 Å resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, ten of which are arranged in two inverted repeats of 5 helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine (LeuTAa) and the galactose (vSGLT) transporters reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronised by the inverted repeat helices 3 and 8, providing the structural basis of the ‘alternating access’ model for membrane transport.
PMCID: PMC2885439  PMID: 18927357
9.  The gusBC Genes of Escherichia coli Encode a Glucuronide Transport System 
Journal of Bacteriology  2005;187(7):2377-2385.
Two genes, gusB and gusC, from a natural fecal isolate of Escherichia coli are shown to encode proteins responsible for transport of β-glucuronides with synthetic [14C]phenyl-1-thio-β-d-glucuronide as the substrate. These genes are located in the gus operon downstream of the gusA gene on the E. coli genome, and their expression is induced by a variety of β-d-glucuronides. Measurements of transport in right-side-out subcellular vesicles show the system has the characteristics of secondary active transport energized by the respiration-generated proton motive force. When the genes were cloned together downstream of the tac operator-promoter in the plasmid pTTQ18 expression vector, transport activity was increased considerably with isopropylthiogalactopyranoside as the inducer. Amplified expression of the GusB and GusC proteins enabled visualization and identification by N-terminal sequencing of both proteins, which migrated at ca. 32 kDa and 44 kDa, respectively. Separate expression of the GusB protein showed that it is essential for glucuronide transport and is located in the inner membrane, while the GusC protein does not catalyze transport but assists in an as yet unknown manner and is located in the outer membrane. The output of glucuronides as waste by mammals and uptake for nutrition by gut bacteria or reabsorption by the mammalian host is discussed.
PMCID: PMC1065211  PMID: 15774881

Results 1-9 (9)