PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A Dual-Route Perspective on Poor Reading in a Regular Orthography: An fMRI Study 
This study examined functional brain abnormalities in dyslexic German readers who – due to the regularity of German in the reading direction – do not exhibit the reading accuracy problem of English dyslexic readers, but suffer primarily from a reading speed problem. The in-scanner task required phonological lexical decisions (i.e., Does xxx sound like an existing word?) and presented familiar and unfamiliar letter strings of existing phonological words (e.g., Taxi-Taksi) together with nonwords (e.g., Tazi). Dyslexic readers exhibited the same response latency pattern (words < pseudohomophones < nonwords) as nonimpaired readers, but latencies to all item types were much prolonged. The imaging results were suggestive for a different neural organization of reading processes in dyslexic readers. Specifically, dyslexic readers, in response to lexical route processes, exhibited underactivation in a left ventral occipitotemporal region which presumably is engaged by visual-orthographic whole word recognition. This region was also insensitive to the increased visual-orthographic processing demands of the sublexical route. Reduced engagement in response to sublexical route processes was also found in a left inferior parietal region, presumably engaged by attentional processes, and in a left inferior frontal region, presumably engaged by phonological processes. In contrast to this reduced engagement of the optimal left hemisphere reading network (ventral OT, inferior parietal, inferior frontal), our dyslexic readers exhibited increased engagement of visual occipital regions and of regions presumably engaged by silent articulatory processes (premotor/motor cortex and subcortical caudate and putamen).
doi:10.1016/j.cortex.2010.06.004
PMCID: PMC3073233  PMID: 20650450
2.  A Dual-Route Perspective on Brain Activation in Response to Visual Words: Evidence for a Length by Lexicality Interaction in the Visual Word Form Area (VWFA) 
NeuroImage  2009;49(3):2649-2661.
Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., “Does xxx sound like an existing word?”) presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes.
doi:10.1016/j.neuroimage.2009.10.082
PMCID: PMC2989181  PMID: 19896538
3.  A dual-route perspective on poor reading in a regular orthography: An fMRI study 
This study examined functional brain abnormalities in dyslexic German readers who – due to the regularity of German in the reading direction – do not exhibit the reading accuracy problem of English dyslexic readers, but suffer primarily from a reading speed problem. The in-scanner task required phonological lexical decisions (i.e., Does xxx sound like an existing word?) and presented familiar and unfamiliar letter strings of existing phonological words (e.g., Taxi-Taksi) together with nonwords (e.g., Tazi). Dyslexic readers exhibited the same response latency pattern (words < pseudohomophones < nonwords) as nonimpaired readers, but latencies to all item types were much prolonged. The imaging results were suggestive for a different neural organization of reading processes in dyslexic readers. Specifically, dyslexic readers, in response to lexical route processes, exhibited underactivation in a left ventral occipitotemporal (OT) region which presumably is engaged by visual-orthographic whole word recognition. This region was also insensitive to the increased visual-orthographic processing demands of the sublexical route. Reduced engagement in response to sublexical route processes was also found in a left inferior parietal region, presumably engaged by attentional processes, and in a left inferior frontal region, presumably engaged by phonological processes. In contrast to this reduced engagement of the optimal left hemisphere reading network (ventral OT, inferior parietal, inferior frontal), our dyslexic readers exhibited increased engagement of visual occipital regions and of regions presumably engaged by silent articulatory processes (premotor/motor cortex and subcortical caudate and putamen).
doi:10.1016/j.cortex.2010.06.004
PMCID: PMC3073233  PMID: 20650450
Developmental dyslexia; fMRI; Reading; Phonological lexical decision; Dual-route
4.  A Common Left Occipito-Temporal Dysfunction in Developmental Dyslexia and Acquired Letter-By-Letter Reading? 
PLoS ONE  2010;5(8):e12073.
Background
We used fMRI to examine functional brain abnormalities of German-speaking dyslexics who suffer from slow effortful reading but not from a reading accuracy problem. Similar to acquired cases of letter-by-letter reading, the developmental cases exhibited an abnormal strong effect of length (i.e., number of letters) on response time for words and pseudowords.
Results
Corresponding to lesions of left occipito-temporal (OT) regions in acquired cases, we found a dysfunction of this region in our developmental cases who failed to exhibit responsiveness of left OT regions to the length of words and pseudowords. This abnormality in the left OT cortex was accompanied by absent responsiveness to increased sublexical reading demands in phonological inferior frontal gyrus (IFG) regions. Interestingly, there was no abnormality in the left superior temporal cortex which—corresponding to the onological deficit explanation—is considered to be the prime locus of the reading difficulties of developmental dyslexia cases.
Conclusions
The present functional imaging results suggest that developmental dyslexia similar to acquired letter-by-letter reading is due to a primary dysfunction of left OT regions.
doi:10.1371/journal.pone.0012073
PMCID: PMC2920311  PMID: 20711448
5.  Using parametric regressors to disentangle properties of multi-feature processes 
FMRI data observed under a given experimental condition may be decomposed into two parts: the average effect and the deviation of single replications from this average effect. The average effect is represented by the mean activation over a specific condition. The deviation from this average effect may be decomposed into two components as well: systematic variation due to known empirical factors and pure measurement error. In most fMRI designs deviations from mean activation may be treated as measurement error. Nevertheless, often deviation from the average also may contain systematic variation that can be distinguished from simple measurement error. In these cases, the average fMRI signal may provide only a coarse picture of real brain activation. The larger the variation within-condition, the coarser the average effect and the more relevant is the impact of deviations from it. Systematic deviation from the mean activation may be examined by defining a set of parametric regressors. Here, the applicability of parametric methods to refine the evaluation of fMRI studies is discussed with special emphasis on (i) examination of the impact of continuous predictors on the fMRI signal, (ii) control for variation within each experimental condition and (iii) isolation of specific contributions by different features of a single complex stimulus, especially in the case of a sampled stimulus. The usefulness and applicability of this method are discussed and an example with real data is presented.
doi:10.1186/1744-9081-4-38
PMCID: PMC2535596  PMID: 18706088

Results 1-5 (5)