Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("stocker, W")
1.  ENerGetIcs in hypertrophic cardiomyopathy: traNslation between MRI, PET and cardiac myofilament function (ENGINE study) 
Netherlands Heart Journal  2013;21(12):567-571.
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant heart disease mostly due to mutations in genes encoding sarcomeric proteins. HCM is characterised by asymmetric hypertrophy of the left ventricle (LV) in the absence of another cardiac or systemic disease. At present it lacks specific treatment to prevent or reverse cardiac dysfunction and hypertrophy in mutation carriers and HCM patients. Previous studies have indicated that sarcomere mutations increase energetic costs of cardiac contraction and cause myocardial dysfunction and hypertrophy. By using a translational approach, we aim to determine to what extent disturbances of myocardial energy metabolism underlie disease progression in HCM.
Hypertrophic obstructive cardiomyopathy (HOCM) patients and aortic valve stenosis (AVS) patients will undergo a positron emission tomography (PET) with acetate and cardiovascular magnetic resonance imaging (CMR) with tissue tagging before and 4 months after myectomy surgery or aortic valve replacement + septal biopsy. Myectomy tissue or septal biopsy will be used to determine efficiency of sarcomere contraction in-vitro, and results will be compared with in-vivo cardiac performance. Healthy subjects and non-hypertrophic HCM mutation carriers will serve as a control group.
Our study will reveal whether perturbations in cardiac energetics deteriorate during disease progression in HCM and whether these changes are attributed to cardiac remodelling or the presence of a sarcomere mutation per se. In-vitro studies in hypertrophied cardiac muscle from HOCM and AVS patients will establish whether sarcomere mutations increase ATP consumption of sarcomeres in human myocardium. Our follow-up imaging study in HOCM and AVS patients will reveal whether impaired cardiac energetics are restored by cardiac surgery.
PMCID: PMC3833912  PMID: 24114686
Hypertrophic cardiomyopathy; Carrier; Myocardial energetics; Sarcomere mutations
2.  NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system? 
Journal of Clinical Pathology  2002;55(8):561-568.
Reactive oxygen species play an important role in a variety of (patho)physiological vascular processes. Recent publications have produced evidence of a role for putative non-phagocyte NADP oxidase(s) in the vascular production of reactive oxygen species. In the present review, we discuss the detection of the different components of NADP oxidase(s) in the vascular system, together with the putative role of reactive oxygen species produced by vascular NADPH oxidase(s), in both in vitro and in vivo studies.
PMCID: PMC1769734  PMID: 12147646
NADPH oxidase; phagocytes; reactive oxygen species; atherosclerosis
3.  Microorganisms in the aetiology of atherosclerosis 
Journal of Clinical Pathology  2000;53(9):647-654.
Recent publications have suggested that infective pathogens might play an important role in the pathogenesis of atherosclerosis. This review focuses on these microorganisms in the process of atherosclerosis. The results of in vitro studies, animal studies, tissue studies, and serological studies will be summarised, followed by an overall conclusion concerning the strength of the association of the microorganism with the pathogenesis of atherosclerosis. The role of the bacteria Chlamydia pneumoniae and Helicobacter pylori, and the viruses human immunodeficiency virus, coxsackie B virus, cytomegalovirus, Epstein-Barr virus, herpes simplex virus, and measles virus will be discussed.
Key Words: atherosclerosis • Chlamydia pneumoniae • Helicobacter pylori
PMCID: PMC1731245  PMID: 11041053

Results 1-3 (3)