PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (49)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  REDD1 is essential for stress-induced synaptic loss and depressive behavior 
Nature medicine  2014;20(5):531-535.
Major depressive disorder (MDD) affects up to 17% of the population, causing profound personal suffering and economic loss (1). Clinical and pre-clinical studies have revealed that prolonged stress and MDD are associated with neuronal atrophy of cortical and limbic brain regions (2-9), but the molecular mechanisms underlying these morphological alterations have not yet been identified. Here, we show that stress increases levels of REDD1 (regulated in development and DNA damage responses 1), an inhibitor of mTORC1 (mammalian/mechanistic target of rapamycin complex 1) (10), in rat prefrontal cortex (PFC). This is concurrent with a decrease in phosphorylation of signaling targets of mTORC1, which is implicated in protein synthesis-dependent synaptic plasticity. We also found that REDD1 levels are increased in the postmortem PFC of human subjects with MDD relative to matched controls. Mutant mice with a deletion of REDD1 are resilient to the behavioral, synaptic, and mTORC1 signaling deficits caused by chronic unpredictable stress (CUS), while viral-mediated over expression of REDD1 in the rat PFC is sufficient to cause anxiety- and depressive-like behaviors and neuronal atrophy. Taken together, these postmortem and pre-clinical findings identify REDD1 as a critical mediator underlying the atrophy of neurons and depressive behavior caused by chronic stress exposure.
doi:10.1038/nm.3513
PMCID: PMC4016190  PMID: 24728411
2.  MORPHOMETRIC ANALYSIS OF VASCULAR PATHOLOGY IN THE ORBITOFRONTAL CORTEX OF ELDERLY SUBJECTS WITH MAJOR DEPRESSION 
Objective
Late-life depression has been associated with risk for cerebrovascular pathology, as demonstrated in neuroimaging studies of older depressed patients, as well as mood disorder following cerebrovascular accidents. However, more research is needed on neuroanatomical changes in late-life depression, where there has been no clearly documented link to brain injury. Such studies should examine morphological changes in medium and small sized vessels that supply the cortical gray and white matter.
Methods
The present study used a non-specific histological Nissl staining and a more vessel-specific immunolabeling with endothelial marker von Willebrand Factor (vWF) to estimate density and size of blood vessel segments in the orbitofrontal cortex of 16 elderly subjects with major depressive disorder (MDD) and 9 non-psychiatric comparison subjects.
Results
The density of Nissl-stained vessel segments and of segments with perivascular spaces was higher in subjects with MDD than in comparison subjects in gray (GM) and white matter (WM). In GM, the density of vWF-immunoreactive segments with cross-sectional areas greater than 800 μm2 was higher in MDD. In WM, only the density of vWF-immunoreactive segments with patent perivascular spaces and diameters larger than 60 μm was higher in subjects with MDD. Also in the WM, only subjects with late-onset MDD presented a significantly higher density of vWF-positive segments than comparison subjects.
Conclusions
In elderly subjects with MDD, there appear to be morphological changes that increase visibility of medium-sized vessel segments with some labeling techniques, and this increased visibility may be related to increased patency of perivascular spaces around arterioles.
doi:10.1002/gps.3911
PMCID: PMC3679255  PMID: 23208772
Depression; prefrontal cortex; blood vessels; morphometry
3.  Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects 
Dysregulation of the glutamatergic system has been implicated not only in the treatment of major depressive disorder (MDD), but also in the excitotoxic effects of stress and anxiety on the prefrontal cortex, which may precede the onset of a depressive episode. Our previous studies demonstrate marked deficits in prominent postsynaptic proteins involved in glutamate neurotransmission in the prefrontal cortex (PFC), Brodmann’s area 10 (BA 10) from subjects diagnosed with major depressive disorder (MDD). In the same group of subjects we have identified deficits in expression and phosphorylation level of key components of the mammalian target of rapamycin (mTOR) signalling pathway, known to regulate translation initiation. Based on our previous findings, we have postulated that glutamate-dependent dysregulation of mTOR- initiated protein synthesis in the PFC may underlie the pathology of MDD. The aim of this study was to use the NanoString nCounter System to perform analysis of genes coding for glutamate transporters, glutamate metabolizing enzymes, neurotrophic factors and other intracellular signaling markers involved in glutamate signaling that were not previously investigated by our group in the PFC BA10 from subjects with MDD. We have analyzed a total of 200 genes from 16 subjects with MDD and 16 healthy controls. These are part of the same cohort used in our previous studies. Setting our cutoff p-value ≤ 0.01, marked upregulation of genes coding for mitochondrial glutamate carrier (GC1; p=0.0015), neuropilin 1 (NRP-1; p=0.0019), glutamate receptor ionotropic N-methyl-D-aspartate-associated protein 1 (GRINA; p=0.0060), and fibroblast growth factor receptor 1 (FGFR-1; p=0.010) was identified. No significant differences in expression of the remaining 196 genes were observed between MDD subjects and controls. While upregulation of FGFR-1 has been previously shown in MDD; abnormalities in GC-1, GRINA, and NRP-1 have not been reported. Therefore, this postmortem study identifies GC1, GRINA, and NRP-1 as novel factors associated with MDD; however, future studies will be needed to address the significance of these genes in the pathophysiology of depression and antidepressant activity.
doi:10.1016/j.pnpbp.2012.12.010
PMCID: PMC4089971  PMID: 23261523
prefrontal cortex; major depressive disorder; postmortem; gene expression; digital PCR
4.  Human Freud-2/CC2D1B: a novel repressor of post-synaptic 5-HT1A receptor expression 
Biological psychiatry  2009;66(3):214-222.
Background
Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene (HTR1A), a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor.
Methods
Freud-2 distribution was examined using Northern and Western blot, RT-PCR, immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay and Western blot.
Results
Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus, but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5′ or 3′ human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of post-synaptic 5-HT1A receptor-positive cells. Furthermore siRNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells.
Conclusion
Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.
doi:10.1016/j.biopsych.2009.02.033
PMCID: PMC4084727  PMID: 19423080
5-HT1A receptor; transcription factor; raphe; polymorphism; anxiety; major depressive disorder; serotonin receptors
5.  COVERAGE OF BLOOD VESSELS BY ASTROCYTIC ENDFEET IS REDUCED IN MAJOR DEPRESSIVE DISORDER 
Biological psychiatry  2012;73(7):613-621.
Background
According to clinical studies, depression and cerebrovascular disease influence each other. Despite this evidence, no studies have investigated the relationship between major depressive disorder (MDD) and cerebrovascular disease at the cellular level. Astrocytic processes are a crucial interface between blood vessels and neurons, and astrocyte density is reduced in MDD. This study investigated the coverage of vessels by astrocyte endfeet in the prefrontal cortex in MDD.
Methods
Thirteen pairs of MDD and non-psychiatric control subjects were used for double immunofluorescent staining and confocal image analysis. Frozen sections of gray matter from orbitofrontal area 47 and white matter from the ventro-medial prefrontal cortex were examined. Astrocytic processes (labeled with antibodies for aquaporin-4, AQP4 or glial fibrillary acidic protein, GFAP) were co-localized with blood vessels (labeled with an antibody to collagen IV) to measure the coverage of vessel walls by astrocyte processes.
Results
The coverage of blood vessels by endfeet of AQP4-immunoreactive (IR) astrocytes was significantly reduced by 50 percent in subjects with MDD as compared to controls (ANCOVA: F(1,23)=5.161, p=0.033). This difference was detected in orbitofrontal gray matter but not in white matter. Conversely, the coverage of vessels by GFAP-IR processes did not significantly differ between the groups.
Conclusions
A significant reduction in the coverage of gray matter vessels by AQP4-IR astrocyte processes in MDD suggests alterations in AQP4 functions such as regulation of water homeostasis, blood flow, glucose transport and metabolism, the blood brain barrier, glutamate turnover and synaptic plasticity.
doi:10.1016/j.biopsych.2012.09.024
PMCID: PMC3578083  PMID: 23146357
aquaporin-4; GFAP; glia; neurovascular unit; blood brain barrier; cerebrovascular disease
6.  The Expression of KLF11 (TIEG2), an MAO B-transcriptional activator in the Prefrontal Cortex of Human Alcohol Dependence 
Background
The biochemical pathways underlying alcohol abuse and dependence are not well understood, although brain cell loss and neurotoxicity have been reported in subjects with alcohol dependence. Monoamine oxidase B (MAO B, which catabolizes neurotransmitters such as dopamine) is consistently increased in this psychiatric illness. MAO B has been implicated in the pathogenesis of alcohol dependence, neurodegenerative diseases and alcohol-induced brain neurotoxicity. Recently, the cell growth-inhibitor protein, Kruppel-like factor 11 (KLF11), has been reported to be an MAO-transcriptional activator. KLF11 is also known as TIEG2 (transforming growth factor-beta-inducible early gene 2) and mediates apoptotic cell death. This study investigates the protein expression of KLF11 and its relationship with MAO B using human postmortem prefrontal cortex from subjects with alcohol dependence.
Methods
Twelve subjects with alcohol dependence and the respective psychiatrically-normal control subjects were investigated. Expression of KLF11 and MAO B proteins in the prefrontal cortex were measured by Western blot analysis. A correlation study between KLF11 and MAO B protein expression was also performed.
Results
Levels of KLF11 protein were significantly increased by 44 percent (p<0.03) in the postmortem prefrontal cortex of subjects with alcohol dependence as compared to age- and gender-matched, psychiatrically-normal control subjects. In addition, KLF11 levels were significantly and positively correlated with the increased MAO B protein levels associated with alcohol dependence.
Conclusions
This novel study shows the important role of KLF11, an MAO-transcriptional activator, in human alcohol dependence. It further supports that the KLF11-MAO B cell death cascade may contribute to chronic alcohol-induced brain damage. This argues a case for KLF11-MAO B inhibition as a novel therapeutic strategy that may impact this highly prevalent, often treatment resistant, illness.
doi:10.1111/acer.12229
PMCID: PMC3946920  PMID: 23915421
alcohol dependence; Kruppel-like factor 11 (transforming growth factor-beta-inducible early gene 2); monoamine oxidase; human postmortem prefrontal cortex; brain tissue injury
7.  Hippocampal volume and total cell numbers in major depressive disorder 
Journal of psychiatric research  2012;47(3):299-306.
Neuroimaging consistently reveals smaller hippocampal volume in recurrent or chronic major depressive disorder (MDD). The underlying cellular correlates of the smaller volume are not clearly known. Postmortem tissues from 17 pairs of depressed and control subjects were obtained at autopsy, and informant-based retrospective psychiatric assessment was performed. Formalin-fixed left temporal lobes were sectioned (40 μm), stained for Nissl substance, and every 60th section selected throughout the entire hippocampus. Total volume of the hippocampal formation was calculated, and total numbers of pyramidal neurons (in hippocampal fields CA1, CA2/3, hilus), dentate gyrus (DG) granule cells, and glial cells were estimated stereologically. While hippocampal volume in all MDD subjects was not significantly smaller versus control subjects, in recurrent/chronic MDD, total volume decreased with duration of depressive illness (r=−0.696, p<0.026). There was no significant difference between MDD and controls in total number or density of pyramidal neurons/granule cells or glial cells in CA1, CA2/3, hilus, or DG. However, CA1 pyramidal neuron density increased with duration of illness in recurrent/chronic MDD (r=0.840, p<0.002). Granule cell (r=0.971, p<0.002) and glial cell numbers (r=0.980, p<0.001) increased with age in those taking antidepressant medication (n=6). Increasing DG granule cell and glial cell numbers with age in antidepressant-treated subjects may reflect proliferative effects of antidepressant medications. Decreasing total volume and increasing CA1 pyramidal neuron density with duration of illness in recurrent/chronic MDD lends support to the neuropil hypothesis of MDD.
doi:10.1016/j.jpsychires.2012.10.020
PMCID: PMC3757567  PMID: 23201228
Hippocampus; Depression; Postmortem; Stereology; Neuropil
8.  ASTROCYTE PATHOLOGY IN MAJOR DEPRESSIVE DISORDER: INSIGHTS FROM HUMAN POSTMORTEM BRAIN TISSUE 
Current drug targets  2013;14(11):1225-1236.
The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders.
PMCID: PMC3799810  PMID: 23469922
Glia; Fronto-limbic; Depression; Glutamate; Postmortem
9.  Gene Expression Profiling in Postmortem Prefrontal Cortex of Major Depressive Disorder 
Investigations of the molecular mechanisms underlying major depressive disorder (MDD) have been hampered by the complexity of brain tissue and sensitivity of gene expression profiling approaches. To address these issues, we used discrete microdissections of postmortem dorsolateral prefrontal cortex (DLPFC) (area 9) and an oligonucleotide (60mer) microarray hybridization procedure that increases sensitivity without RNA amplification. Mixed-effects statistical methods were used to rigorously control for medication usage in the subset of medicated depressed subjects. These analyses yielded a rich profile of dysregulated genes. Two of the most highly dysregulated genes of interest were stresscopin, a neuropeptide involved in stress responses, and Forkhead box D3 (FOXD3), a transcription factor. Secondary cell-based analysis demonstrated that stresscopin and FoxD3 are increased in neurons of DLPFC gray matter of MDD subjects. These findings identify abnormal gene expression in a discrete region of MDD subjects and contribute to further elucidation of the molecular alterations of this complex mood disorder.
doi:10.1523/JNEUROSCI.4083-07.2007
PMCID: PMC3763487  PMID: 18045927
microarray; stresscopin; urocortin III; stress; corticotrophin releasing hormone; FoxD3; fibroblast growth factor
10.  Transcriptional Expression of Serotonergic Regulators in Laser-Captured Microdissected Dorsal Raphe Neurons of Subjects with Major Depressive Disorder: Sex-Specific Differences 
Journal of neurochemistry  2009;112(2):397-409.
The relationship between serotonin (5-HT) and major depressive disorder (MDD) has been extensively studied but certain aspects are still ambiguous. Given the evidence that 5-HT neurotransmission is reduced in depressed subjects, it is possible that one or more of the 5-HT regulators may be altered in the dorsal raphe nucleus (DR) of depressed subjects. Candidates that regulate 5-HT synthesis and neuronal activity of 5-HT neurons include intrinsic regulators such as tryptophan hydroxylase 2 (TPH2), 5-HT autoreceptors, 5-HT transporter (SERT) and transcription factors, as well as afferent regulators such as estrogen and brain-derived neurotrophic factor (BDNF). The present study was designed to quantify mRNA concentrations of the above 5-HT regulators in an isolated population of 5-HT-containing DR neurons of MDD subjects and gender-matched psychiatrically normal control subjects. We found that mRNA concentrations of the 5-HT1D receptor and the transcription factors, NUDR and REST, were significantly increased in DR-captured neurons of female MDD subjects compared to female control subjects. No significant differences were found for the transcripts in male MDD subjects compared to male controls. This study reveals sex-specific alterations in gene expression of the presynaptic 5-HT1D autoreceptors and 5-HT-related transcription factors, NUDR and REST, in DR neurons of women with MDD.
doi:10.1111/j.1471-4159.2009.06462.x
PMCID: PMC3757563  PMID: 19878438
Dorsal raphe nucleus; Laser capture microdissection; Major depressive disorder; messenger RNA; Serotonin receptors; Transcription factors
11.  Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder 
Background
Norepinephrine and glutamate are among several neurotransmitters implicated in the neuropathology of major depressive disorder (MDD). Glia deficits have also been demonstrated in people with MDD, and glia are critical modulators of central glutamatergic transmission. We studied glia in men with MDD in the region of the brain (locus coeruleus; LC) where noradrenergic neuronal cell bodies reside and receive glutamatergic input.
Methods
The expression of 3 glutamate-related genes (SLC1A3, SLC1A2, GLUL) concentrated in glia and a glia gene (GFAP) were measured in postmortem tissues from men with MDD and from paired psychiatrically healthy controls. Initial gene expression analysis of RNA isolated from homogenized tissue (n = 9–10 pairs) containing the LC were followed by detailed analysis of gene expressions in astrocytes and oligodendrocytes (n = 6–7 pairs) laser captured from the LC region. We assessed protein changes in GFAP using immunohistochemistry and immunoblotting (n = 7–14 pairs).
Results
Astrocytes, but not oligodendrocytes, demonstrated robust reductions in the expression of SLC1A3 and SLC1A2, whereas GLUL expression was unchanged. GFAP expression was lower in astrocytes, and we confirmed reduced GFAP protein in the LC using immunostaining methods.
Limitations
Reduced expression of protein products of SLC1A3 and SLC1A2 could not be confirmed because of insufficient amounts of LC tissue for these assays. Whether gene expression abnormalities were associated with only MDD and not with suicide could not be confirmed because most of the decedents who had MDD died by suicide.
Conclusion
Major depressive disorder is associated with unhealthy astrocytes in the noradrenergic LC, characterized here by a reduction in astrocyte glutamate transporter expression. These findings suggest that increased glutamatergic activity in the LC occurs in men with MDD.
doi:10.1503/jpn.120110
PMCID: PMC3692725  PMID: 23415275
12.  Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects 
Major depressive disorder (MDD) has been linked to changes in function and activity of the hippocampus, one of the central limbic regions involved in regulation of emotions and mood. The exact cellular and molecular mechanisms underlying hippocampal plasticity in response to stress are yet to be fully characterized. In this study, we examined the genetic profile of micro-dissected subfields of post-mortem hippocampus from subjects diagnosed with MDD and comparison subjects matched for sex, race and age. Gene expression profiles of the dentate gyrus and CA1 were assessed by 48K human HEEBO whole genome microarrays and a subgroup of identified genes was confirmed by real-time polymerase chain reaction (qPCR). Pathway analysis revealed altered expression of several gene families, including cytoskeletal proteins involved in rearrangement of neuronal processes. Based on this and evidence of hippocampal neuronal atrophy in MDD, we focused on the expression of cytoskeletal, synaptic and glutamate receptor genes. Our findings demonstrate significant dysregulation of synaptic function/structure related genes SNAP25, DLG2 (SAP93), and MAP1A, and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptor subunit genes GLUR1 and GLUR3. Several of these human target genes were similarly dysregulated in a rat model of chronic unpredictable stress and the effects reversed by antidepressant treatment. Together, these studies provide new evidence that disruption of synaptic and glutamatergic signalling pathways contribute to the pathophysiology underlying MDD and provide interesting targets for novel therapeutic interventions.
doi:10.1017/S1461145712000016
PMCID: PMC3414647  PMID: 22339950
AMPA; depression; hippocampus; post-mortem; stress
13.  Allopregnanolone Reinstates Tyrosine Hydroxylase Immunoreactive Neurons and Motor Performance in an MPTP-Lesioned Mouse Model of Parkinson's Disease 
PLoS ONE  2012;7(11):e50040.
Restorative/protective therapies to restore dopamine neurons in the substantia nigra pars compacta (SNpc) are greatly needed to effectively change the debilitating course of Parkinson's disease. In this study, we tested the therapeutic potential of a neurogenic neurosteroid, allopregnanolone, in the restoration of the components of the nigrostriatal pathway in MPTP-lesioned mice by measuring striatal dopamine levels, total and tyrosine hydroxylase immunoreactive neuron numbers and BrdU-positive cells in the SNpc. An acute treatment (once/week for two weeks) with allopregnanolone restored the number of tyrosine hydroxylase-positive and total cell numbers in the SNpc of MPTP-lesioned mice, even though this did not increase striatal dopamine. It was also noted that MPTP treated mice to which allopregnanolone was administered had an increase in BrdU-positive cells in the SNpc. The effects of allopregnanolone in MPTP-lesioned mice were more apparent in mice that underwent behavioral tests. Interestingly, mice treated with allopregnanolone after MPTP lesion were able to perform at levels similar to that of non-lesioned control mice in a rotarod test. These data demonstrate that allopregnanolone promotes the restoration of tyrosine hydroxylase immunoreactive neurons and total cells in the nigrostriatal tract, improves the motor performance in MPTP-treated mice, and may serve as a therapeutic strategy for Parkinson's disease.
doi:10.1371/journal.pone.0050040
PMCID: PMC3510204  PMID: 23209637
14.  The Reduction of R1, a Novel Repressor Protein for Monoamine Oxidase A, in Major Depressive Disorder 
Neuropsychopharmacology  2011;36(10):2139-2148.
The novel transcriptional repressor protein, R1 (JPO2/CDCA7L/RAM2), inhibits monoamine oxidase A (MAO A) gene expression and influences cell proliferation and survival. MAO A is implicated in several neuropsychiatric illnesses and highly elevated in major depressive disorder (MDD); however, whether R1 is involved in these disorders is unknown. This study evaluates the role of R1 in depressed subjects either untreated or treated with antidepressant drugs. R1 protein levels were determined in the postmortem prefrontal cortex of 18 untreated MDD subjects and 12 medicated MDD subjects compared with 18 matched psychiatrically normal control subjects. Western blot analysis showed that R1 was significantly decreased by 37.5% (p<0.005) in untreated MDD subjects. The R1 level in medicated MDD subjects was also significantly lower (by 30% p<0.05) compared with control subjects, but was not significantly different compared with untreated MDD subjects. Interestingly, the reduction in R1 was significantly correlated with an increase (approximately 40% p<0.05) in MAO A protein levels within the MDD groups compared with controls. Consistent with the change in MAO A protein expression, the MAO A catalytic activity was significantly greater in both MDD groups compared with controls. These results suggest that reduced R1 may lead to elevated MAO A levels in untreated and treated MDD subjects; moreover, the reduction of R1 has been implicated in apoptotic cell death and apoptosis has also been observed in the brains of MDD subjects. Therefore, modulation of R1 levels may provide a new therapeutic target in the development of more effective strategies to treat MDD.
doi:10.1038/npp.2011.105
PMCID: PMC3158311  PMID: 21654740
major depressive disorder; transcriptional repressor protein; monoamine oxidase; treatment; selective serotonin reuptake inhibitor; prefrontal cortex; molecular & cellular neurobiology; depression; unipolar/bipolar; drug discovery/development; biological psychiatry; major depressive disorder; transcriptional repressor protein; monoamine oxidase; treatment; prefrontal cortex
15.  Quantitative Analysis of Focused A-To-I RNA Editing Sites by Ultra-High-Throughput Sequencing in Psychiatric Disorders 
PLoS ONE  2012;7(8):e43227.
A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT2C serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain.
doi:10.1371/journal.pone.0043227
PMCID: PMC3422315  PMID: 22912834
16.  The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder 
Recent studies demonstrate that rapid antidepressant response to ketamine is mediated by activation of the mammalian target of rapamycin (mTOR) signaling pathway, leading to increased synaptic proteins in the prefrontal cortex (PFC) of rats. Our postmortem studies indicate robust deficits in prominent postsynaptic proteins including N-methyl-D-aspartate (NMDA) receptor subunits (NR2A, NR2B), metabotropic glutamate receptor subtype 5 (mGluR5) and postsynaptic density protein 95 kDa (PSD-95) in the PFC in major depressive disorder (MDD). We hypothesize that deficits in the mTOR-dependent translation initiation pathway contribute to the molecular pathology seen in the PFC of MDD subjects, and that a rapid reversal of these abnormalities may underlie antidepressant activity. The majority of known translational regulation occurs at the level of initiation. mTOR regulates translation initiation via its downstream components: p70-kDa ribosomal protein S6 kinase (p70S6K), and eukaryotic initiation factors 4E and 4B (eIF4E, eIF4B). In this study, we examined the expression of mTOR and its core downstream signaling targets: p70S6K, eIF4E, eIF4B in the PFC of 12 depressed subjects and 12 psychiatrically healthy controls using Western blot. Levels of eIF4E phosphorylated at serine 209 (p-eIF4E-Ser209) and eIF4B phosphorylated at serine 504 (p-eIF4B-Ser504) were also examined. Adjacent cortical tissue samples from both cohorts of subjects were used in our previous postmortem analyses. There was a significant reduction in mTOR, p70S6K, eIF4B and p-eIF4B protein expression in MDD subjects relative to controls. No group differences were observed in eIF4E, p-eIF4E or actin levels. Our findings show deficits in mTOR-dependent translation initiation in MDD particularly via the p70S6K/eIF4B pathway, and indicate a potential association between marked deficits in synaptic proteins and dysregulation of mTOR signaling in MDD.
doi:10.1016/j.pnpbp.2011.05.010
PMCID: PMC3154612  PMID: 21635931
prefrontal cortex; translation initiation pathway; major depressive disorder; postmortem
17.  Vascular and extravascular immunoreactivity for Intercellular Adhesion Molecule 1 in the orbitofrontal cortex of subjects with major depression: age-dependent changes 
Journal of affective disorders  2011;132(3):422-431.
Background
Vascular and immune alterations in the prefrontal cortex may contribute to major depression in elderly subjects. Intercellular adhesion molecule-1 (ICAM-1), major inflammatory mediator in vessels and astrocytes, could be altered in geriatric depression, but little is known about its age-dependent expression in subjects with depression and its relationship to astrocytes identified by the marker glial fibrillary acidic protein (GFAP), found to be reduced in depression.
Methods
We measured the percentage of gray matter area fraction covered by ICAM-1 immunoreactivity in blood vessels and in extravascular accumulations of ICAM-1 immunoreactivity in 19 non-psychiatric comparison subjects and 18 subjects with major depression, all characterized by postmortem psychological diagnosis. Association of extravascular ICAM-1 to GFAP-positive astrocytes was investigated by double-labeling immunofluorescence.
Results
Vascular and extravascular fractions of ICAM-1 immunoreactivity were lower in subjects with MDD than in non-psychiatric comparison subjects. Non-psychiatric comparison subjects older than 60 experienced dramatic increase in extravascular ICAM-1 immunoreactivity, but this increase was attenuated in elderly subjects with MDD, particularly in those dying by suicide. Most extracellular ICAM-1 immunoreactivity was coextensive with GFAP-immunoreactive astrocytes in both groups.
Limitations
Heterogeneity in type and dosage of antidepressant medication. Difficulty in determining the exact onset of depression in subjects older than 60 at the time of death. Routine cerebrovascular pathological screening may miss subtle subcellular and molecular changes.
Conclusions
There is significant attenuation of extravascular and vascular ICAM-1 immunoreactivity in elderly subjects with major depression suggesting an astrocyte-associated alteration in immune function in the aging orbitofrontal cortex of subjects with MDD.
doi:10.1016/j.jad.2011.03.052
PMCID: PMC3137705  PMID: 21536333
Depression; prefrontal cortex; astrocytes; GFAP; ICAM-1; postmortem
18.  Reduced Metabotropic Glutamate Receptor 5 Density in Major Depression Determined by [11C]ABP688 Positron Emission Tomography and Postmortem Study 
The American journal of psychiatry  2011;168(7):727-734.
Objective
Clinical and preclinical evidence suggest a hyperactive glutamatergic system in clinical depression. Recently, the metabotropic glutamate receptor 5 (mGluR5) has been proposed as an attractive target for discovery of novel therapeutic approaches against depression. The goal of this study was to compare mGluR5 binding (PET study) and mGluR5 protein expression (postmortem study) between subjects with major depressive disorder and healthy controls.
Method
Images of mGluR5 receptor binding were acquired using PET and [11C]ABP688 that binds to an allosteric site with high specificity in 11 unmedicated subjects with major depression and 11 matched healthy controls; the amount of mGluR5 protein was investigated using Western blot method in brain samples of 15 depressed subjects and 15 matched controls (postmortem study).
Results
The PET study revealed decreased regional mGluR5 binding in the prefrontal cortex, the cingulate cortex, the insula, the thalamus and the hippocampus of the depressed individuals (uncorrected p<0.001). Severity of depression correlated negatively with mGluR5 binding in the hippocampus (cluster-level corrected p=0.029). The postmortem study showed reduced mGluR5 protein expression in the prefrontal cortex (Brodmann's area 10) in depression (p<0.014), while prefrontal mGluR1 protein expression was unchanged.
Conclusions
The reductions in mGluR5 binding found in the depressed sample are compatible with reduced protein expression in postmortem tissue. Thus, both studies suggest that basal or compensatory changes in excitatory neurotransmission play roles in the pathophysiology of major depression.
doi:10.1176/appi.ajp.2011.09111607
PMCID: PMC3129412  PMID: 21498461
19.  Allopregnanolone Increases the Number of Dopaminergic Neurons in Substantia Nigra of a Triple Transgenic Mouse Model of Alzheimer’s Disease 
Current Alzheimer Research  2012;9(4):473-480.
More than a third of Alzheimer’s disease (AD) patients show nigrostriatal pathway disturbances, resulting in akinesia (inability to initiate movement) and bradykinesia (slowness of movement). The high prevalence of this dysfunction of dopaminergic neuron in the nigrostriatal pathway in AD suggests that the risk factors for AD appear also significant risk factors for substantia nigra pars compacta (SNpc) lesions. Previously, we have demonstrated that allopregnanolone (APα) promotes neurogenesis and improves the cognitive function in a triple transgenic mouse model of AD (3xTgAD). In this study, we sought to exam 1) the SNpc lesions in 3xTgAD mice and 2) the impact of APα on promoting the regeneration of new dopaminergic neurons in SNpc of the 3xTgAD mice. The number of Nissl-stained total neurons, tyrosine hydroxylase (TH) positive neurons, and BrdU/TH double positive newly formed neurons were analyzed with unbiased stereology. In the SNpc of 3xTgAD mice, TH positive neurons was 47 ± 18 % (p = 0.007), total neurons was 62 ± 11.6 % (p = 0.016), of those in the SNpc of non-Tg mice, respectively. APα treatment increased the TH positive neurons in the SNpc of 3xTgAD mice to 93.2 ± 18.5 % (p = 0.021 vs. 3xTgAD vehicle) and the total neurons to 84.9 ± 6.6 (p = 0.046 vs. 3xTgAD vehicle) of non-Tg mice. These findings indicate that there is a loss of neurons, specifically the TH positive neurons in SNpc of 3xTgAD mice, and that APα reverses the lesion in SNpc of 3xTgAD by increasing the formation of new TH neurons.
PMCID: PMC3348519  PMID: 22272610
Allopregnanolone; neurogenesis; tyrosine hydroxylase (TH); substantia nigra; dopaminergic neurons
20.  A Dominant Negative ERβ Splice Variant Determines the Effectiveness of Early or Late Estrogen Therapy after Ovariectomy in Rats 
PLoS ONE  2012;7(3):e33493.
The molecular mechanisms for the discrepancy in outcome of initiating estrogen therapy (ET) around peri-menopause or several years after menopause in women are unknown. We hypothesize that the level of expression of a dominant negative estrogen receptor (ER) β variant, ERβ2, may be a key factor determining the effectiveness of ET in post-menopausal women. We tested this hypothesis in ovariectomized nine month-old (an age when irregular estrous cycles occur) female Sprague Dawley rats. Estradiol treatment was initiated either 6 days (Early ET, analogous to 4 months post-menopause in humans), or 180 days (Late ET, analogous to 11 years post-menopause in humans) after ovariectomy. Although ERβ2 expression increased in all OVX rats, neurogenic and neuroprotective responses to estradiol differed in Early and Late ET. Early ET reduced ERβ2 expression in both hippocampus and white blood cells, increased the hippocampal cell proliferation as assessed by Ki-67 expression, and improved mobility in the forced swim test. Late ET resulted in either no or modest effects on these parameters. There was a close correlation between the degree of ERβ2 expression and the preservation of neural effects by ET after OVX in rats, supporting the hypothesis that persistent elevated levels of ERβ2 are a molecular basis for the diminished effectiveness of ET in late post-menopausal women. The correlation between the expression of ERβ2 in circulating white blood cells and brain cells suggests that ERβ2 expression in peripheral blood cells may be an easily accessible marker to predict the effective window for ET in the brain.
doi:10.1371/journal.pone.0033493
PMCID: PMC3302771  PMID: 22428062
21.  Age-Dependent Reductions in the Level of Glial Fibrillary Acidic Protein in the Prefrontal Cortex in Major Depression 
The density of glial cells is reduced in certain layers of the dorsolateral prefrontal cortex in major depressive disorder (MDD). Moreover, there are reductions in the packing density of glial fibrillary acidic protein (GFAP) immunoreactive astrocytes in the same cortical layers in younger subjects with MDD. The objective of the present study was to test if the level of GFAP is preferentially decreased in younger subjects with MDD, and whether GFAP levels are correlated with the age of onset of depression. Post-mortem brain tissue punches from dorsolateral prefrontal cortex were collected from 15 subjects with MDD and 15 age-matched psychiatrically normal control subjects. Western blots were performed on gels containing duplicated samples from both subjects of each matched pair, and on gels containing samples at different ages from either the MDD or the control group. The GFAP level was calculated as the ratio of the optical density of GFAP bands to actin bands in subjects with MDD and nonpsychiatric controls. Levels of GFAP were significantly lower in subjects with MDD as compared to controls and this decrease was most prominent in subjects less than 60 years old at the time of death. In the MDD group, GFAP levels were positively correlated with age at the time of death and show a trend toward correlation with the age of onset of depression. These findings indicate that a decrease in levels of GFAP may contribute to the pathophysiology of MDD, particularly in subjects of relatively young age.
doi:10.1038/sj.npp.1300525
PMCID: PMC3146059  PMID: 15238995
depression; glia; astrocytes; Western blotting; frontal lobe; aging
22.  Unchanged packing density but altered size of neurofilament immunoreactive neurons in the prefrontal cortex in schizophrenia and major depression 
Schizophrenia research  2005;76(2-3):159-171.
Morphometric changes in the general population of Nissl-stained neurons in area 9 of the dorsolateral prefrontal cortex have been reported in major depressive disorder (MDD) and schizophrenia. These alterations include lamina-specific reductions in the packing density of neuronal somata in MDD, increases or reductions in the density of neuronal somata in schizophrenia, and reductions in average size of neuronal somata in both MDD and schizophrenia. These changes are prominent in deep layer III, where pyramidal excitatory neurons establishing cortico-cortical association connections are localized. To test whether deep layer III pyramidal neurons are differentially affected in MDD or schizophrenia, an antibody was used that labels both phosphorylated and non-phosphorylated forms of the 200 kD neurofilament protein (NF200) in pyramidal cells of layer III in area 9. The packing density and somal size of NF200-immunoreactive (IR) pyramidal neurons were measured in area 9 in 13 subjects with nonpsychotic MDD, 11 subjects with schizophrenia and 13 psychiatrically normal controls. Analysis of covariance did not reveal a difference in packing density among groups. However, the mean size of NF200-IR somata was significantly larger in subjects with schizophrenia than in controls. These results indicate that this neuronal subpopulation does not contribute to the smaller average size of neuronal somata in layer III of prefrontal cortical area 9 in schizophrenia or MDD. In addition, the enlarged somal size in schizophrenia as compared to controls suggests that NF200 neurons may contribute differentially to unique cognitive disturbances present in schizophrenia and not in MDD subjects.
doi:10.1016/j.schres.2005.02.015
PMCID: PMC3146062  PMID: 15949649
Postmortem; Immunohistochemistry; Brodmann’s area 9; Human; Psychiatry
23.  Apples to oranges?: A direct comparison between suicide attempters and suicide completers 
Journal of affective disorders  2009;124(1-2):90-97.
Background:
Suicide attempters and completers may represent different but overlapping groups of distressed individuals. Although depression is related to an increased risk of suicide, the presence of depression may not discriminate suicide attempters from completers. The present study compared suicide attempters and suicide completers on symptoms of depression, the presence of suicide-related variables and stressful life events.
Aims:
The present study sought to identify the key differences between 50 suicide attempters and 50 completers, all diagnosed with a Major Depressive Disorder at the time of their suicidal act.
Methods:
Suicide attempters and family member informants of suicide completers participated in a thorough psychosocial evaluation. To maximize comparisons with completers, suicide attempters were subclassifed based on the lethality of their attempt.
Results:
Suicide attempters and completers were similar on most measures of depressive symptoms. However, suicide completers were significantly more likely to use alcohol or drugs prior to their suicidal act and they were more likely to leave a suicide note. Suicide completers were significantly more likely to have encountered significant job stress and financial problems.
Conclusions:
The present findings have documented several similarities and differences between suicide attempters and suicide completers. Future research may help to clarify the key warning signs that reflect the risk of completed suicide in adults who have been diagnosed with a Major Depressive Disorder.
doi:10.1016/j.jad.2009.10.020
PMCID: PMC2875283  PMID: 19903573
Suicide; suicide attempt; suicide completion
24.  Glia Pathology in the Prefrontal Cortex in Alcohol Dependence with and without Depressive Symptoms 
Biological psychiatry  2002;52(12):1121-1133.
Background
Reductions in glial density and enlargement of glial nuclei have been reported in the dorsolateral prefrontal cortex (dlPFC) in mood disorders. In alcohol dependence, often comorbid with depression, it is unclear whether there are changes in the density and size of glial cells in the dlPFC.
Methods
The packing density and size of Nissl-stained glial cell nuclei were analyzed postmortem in the cortical layers of the dlPFC from 21 control and 17 alcohol-dependent (Alc) subjects without Wernicke or Korsakoff syndromes. Eight Alc subjects had depressive symptoms. The density of glial cells was measured with a three-dimensional cell counting method, and the areal fraction of glial fibrillary acidic protein immunoreactivity (GFAP) was also determined.
Results
Glial density was reduced by 11–14% in layers V and VI and in all layers combined in the Alc group. The size of glial nuclei was decreased by 3.2% in Alc subjects. The Alc subjects with depressive symptoms showed the lowest values of density and size. There was no difference in GFAP immunoreactivity, although the lowest values were in the Alc group.
Conclusions
Alcohol dependence is characterized by decreases in both density and size of glia in the dlPFC. Glial pathology may be more severe in Alc subjects with depressive symptoms.
PMCID: PMC3115671  PMID: 12488057
Alcoholism; neuropathology; postmortem; comorbidity; morphometry; immunohistochemistry
25.  Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression 
Serotonin1A (5-HT1A) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT1A receptor and have documented gender-specific alterations in 5-HT1A transcription factor and 5-HT1A receptors in female MDD subjects. The 5′ repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT1A receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT1A receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT1A receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT1A receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT1A receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of MDD.
doi:10.1017/S1461145710000301
PMCID: PMC3089896  PMID: 20392296
Major depression; prefrontal cortex; 5-HT1A receptors; serotonin; transcription factor

Results 1-25 (49)