PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Roles Played by Capsid-Dependent Induction of Membrane Curvature and Gag-ESCRT Interactions in Tetherin Recruitment to HIV-1 Assembly Sites 
Journal of Virology  2013;87(8):4650-4664.
Tetherin/BST-2 (here called tetherin) is an antiviral protein that restricts release of diverse enveloped viruses from infected cells through physically tethering virus envelope and host plasma membrane. For HIV-1, specific recruitment of tetherin to assembly sites has been observed as its colocalization with the viral structural protein Gag or its accumulation in virus particles. Because of its broad range of targets, we hypothesized that tetherin is recruited through conserved features shared among various enveloped viruses, such as lipid raft association, membrane curvature, or ESCRT dependence. We observed that reduction of cellular cholesterol does not block tetherin anti-HIV-1 function, excluding an essential role for lipid rafts. In contrast, mutations in the capsid domain of Gag, which inhibit induction of membrane curvature, prevented tetherin-Gag colocalization detectable by confocal microscopy. Disruption of Gag-ESCRT interactions also inhibited tetherin-Gag colocalization when disruption was accomplished via amino acid substitutions in late domain motifs, expression of a dominant-negative Tsg101 derivative, or small interfering RNA (siRNA)-mediated depletion of Tsg101 or Alix. However, further analyses of these conditions by quantitative superresolution localization microscopy revealed that Gag-tetherin coclustering is significantly reduced but persists at intermediate levels. Notably, this residual tetherin recruitment was still sufficient for the full restriction of HIV-1 release. Unlike the late domain mutants, the capsid mutants defective in inducing membrane curvature showed little or no coclustering with tetherin in superresolution analyses. These results support a model in which both Gag-induced membrane curvature and Gag-ESCRT interactions promote tetherin recruitment, but the recruitment level achieved by the former is sufficient for full restriction.
doi:10.1128/JVI.03526-12
PMCID: PMC3624355  PMID: 23408603
2.  Functional Redundancy in HIV-1 Viral Particle Assembly 
Journal of Virology  2012;86(23):12991-12996.
Expression of a retroviral Gag protein in mammalian cells leads to the assembly of virus particles. In vitro, recombinant Gag proteins are soluble but assemble into virus-like particles (VLPs) upon addition of nucleic acid. We have proposed that Gag undergoes a conformational change when it is at a high local concentration and that this change is an essential prerequisite for particle assembly; perhaps one way that this condition can be fulfilled is by the cooperative binding of Gag molecules to nucleic acid. We have now characterized the assembly in human cells of HIV-1 Gag molecules with a variety of defects, including (i) inability to bind to the plasma membrane, (ii) near-total inability of their capsid domains to engage in dimeric interaction, and (iii) drastically compromised ability to bind RNA. We find that Gag molecules with any one of these defects still retain some ability to assemble into roughly spherical objects with roughly correct radius of curvature. However, combination of any two of the defects completely destroys this capability. The results suggest that these three functions are somewhat redundant with respect to their contribution to particle assembly. We suggest that they are alternative mechanisms for the initial concentration of Gag molecules; under our experimental conditions, any two of the three is sufficient to lead to some semblance of correct assembly.
doi:10.1128/JVI.06287-11
PMCID: PMC3497692  PMID: 22993163
3.  Dimeric RNA Recognition Regulates HIV-1 Genome Packaging 
PLoS Pathogens  2013;9(3):e1003249.
How retroviruses regulate the amount of RNA genome packaged into each virion has remained a long-standing question. Our previous study showed that most HIV-1 particles contain two copies of viral RNA, indicating that the number of genomes packaged is tightly regulated. In this report, we examine the mechanism that controls the number of RNA genomes encapsidated into HIV-1 particles. We hypothesize that HIV-1 regulates genome packaging by either the mass or copy number of the viral RNA. These two distinct mechanisms predict different outcomes when the genome size deviates significantly from that of wild type. Regulation by RNA mass would result in multiple copies of a small genome or one copy of a large genome being packaged, whereas regulation by copy number would result in two copies of a genome being packaged independent of size. To distinguish between these two hypotheses, we examined the packaging of viral RNA that was larger (≈17 kb) or smaller (≈3 kb) than that of wild-type HIV-1 (≈9 kb) and found that most particles packaged two copies of the viral genome regardless of whether they were 17 kb or 3 kb. Therefore, HIV-1 regulates RNA genome encapsidation not by the mass of RNA but by packaging two copies of RNA. To further explore the mechanism that governs this regulation, we examined the packaging of viral RNAs containing two packaging signals that can form intermolecular dimers or intramolecular dimers (self-dimers) and found that one self-dimer is packaged. Therefore, HIV-1 recognizes one dimeric RNA instead of two copies of RNA. Our findings reveal that dimeric RNA recognition is the key mechanism that regulates HIV-1 genome encapsidation and provide insights into a critical step in the generation of infectious viruses.
Author Summary
Viruses must package their genomes in particles to pass their genetic information to the next generation. Although many aspects of RNA packaging are well-studied, how retroviruses regulate the number of genomes in the particle is currently unknown. Based on the dimeric nature of retroviral genomes in particles, it was often assumed that two copies of RNA were packaged into one particle. This assumption was validated recently when we demonstrated that most HIV-1 particles contain two copies of viral RNA, which revealed that the number of genomes packaged is tightly controlled. In this report, we examined the mechanism that regulates the amount of RNAs encapsidated into HIV-1 particles. Our results showed that RNA packaging is not regulated by the mass of the viral RNA as two copies of small or large genomes are packaged. However, packaging of two copies of RNA can be perturbed; HIV-1 can encapsidate one copy of its genome when the RNA contains two packaging/dimerization signals that allow for intramolecular dimer (self-dimer) formation. These studies revealed that HIV-1 regulates genome packaging by recognizing the dimeric RNA structure, and suggest that the interaction of viral protein Gag and dimeric RNA serves as the nucleation point of virus assembly.
doi:10.1371/journal.ppat.1003249
PMCID: PMC3605237  PMID: 23555259
4.  The Interdomain Linker Region of HIV-1 Capsid Protein is a Critical Determinant of Proper Core Assembly and Stability 
Virology  2011;421(2):253-265.
The HIV-1 capsid protein consists of two independently folded domains connected by a flexible peptide linker (residues 146–150), the function of which remains to be defined. To investigate the role of this region in virus replication, we made alanine or leucine substitutions in each linker residue and two flanking residues. Three classes of mutants were identified: (i) S146A and T148A behave like wild type (WT); (ii) Y145A, I150A, and L151A are noninfectious, assemble unstable cores with aberrant morphology, and synthesize almost no viral DNA; and (iii) P147L and S149A display a poorly infectious, attenuated phenotype. Infectivity of P147L and S149A is rescued specifically by pseudotyping with vesicular stomatitis virus envelope glycoprotein. Moreover, despite having unstable cores, these mutants assemble WT-like structures and synthesize viral DNA, although less efficiently than WT. Collectively, these findings demonstrate that the linker region is essential for proper assembly and stability of cores and efficient replication.
doi:10.1016/j.virol.2011.09.012
PMCID: PMC3573886  PMID: 22036671
HIV-1 capsid protein; HIV-1 assembly; HIV-1 cores; VSV-G pseudotyping; interdomain linker; in vitro assembly; TRIM5 proteins; host restriction; virus disassembly; reverse transcription
5.  Structural and Functional Insights into the HIV-1 Maturation Inhibitor Binding Pocket 
PLoS Pathogens  2012;8(11):e1002997.
Processing of the Gag precursor protein by the viral protease during particle release triggers virion maturation, an essential step in the virus replication cycle. The first-in-class HIV-1 maturation inhibitor dimethylsuccinyl betulinic acid [PA-457 or bevirimat (BVM)] blocks HIV-1 maturation by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. A structurally distinct molecule, PF-46396, was recently reported to have a similar mode of action to that of BVM. Because of the structural dissimilarity between BVM and PF-46396, we hypothesized that the two compounds might interact differentially with the putative maturation inhibitor-binding pocket in Gag. To test this hypothesis, PF-46396 resistance was selected for in vitro. Resistance mutations were identified in three regions of Gag: around the CA-SP1 cleavage site where BVM resistance maps, at CA amino acid 201, and in the CA major homology region (MHR). The MHR mutants are profoundly PF-46396-dependent in Gag assembly and release and virus replication. The severe defect exhibited by the inhibitor-dependent MHR mutants in the absence of the compound is also corrected by a second-site compensatory change far downstream in SP1, suggesting structural and functional cross-talk between the HIV-1 CA MHR and SP1. When PF-46396 and BVM were both present in infected cells they exhibited mutually antagonistic behavior. Together, these results identify Gag residues that line the maturation inhibitor-binding pocket and suggest that BVM and PF-46396 interact differentially with this putative pocket. These findings provide novel insights into the structure-function relationship between the CA MHR and SP1, two domains of Gag that are critical to both assembly and maturation. The highly conserved nature of the MHR across all orthoretroviridae suggests that these findings will be broadly relevant to retroviral assembly. Finally, the results presented here provide a framework for increased structural understanding of HIV-1 maturation inhibitor activity.
Author Summary
Maturation of HIV-1 particles, which occurs as they bud off from the infected cell, is triggered by the step-wise cleavage of the major viral structural polyprotein, Pr55Gag, to individual, mature Gag proteins. The viral protease is the enzyme responsible for Gag polyprotein cleavage. Maturation inhibitors prevent the viral protease from processing Gag at one particular cleavage site, but how they accomplish this is not understood. In this study, the ability of HIV-1 to become resistant to the two structurally distinct maturation inhibitors that have thus far been reported was examined. We found that one of these compounds, PF-46396, gives rise to resistance mutations that map to three domains in Gag, including a region known as the major homology region (MHR). The MHR is highly conserved among retroviruses and is known to be very important for virus assembly and maturation. These MHR mutants were observed to replicate much better in the presence of PF-46396 than in its absence; i.e., these mutants are compound-dependent. We were also able to select for second-site mutations in Gag that reversed the replication defects imposed by the MHR mutations. These results define residues in Gag that comprise the maturation inhibitor-binding pocket and also identify regions of Gag that structurally and functionally interact with the MHR.
doi:10.1371/journal.ppat.1002997
PMCID: PMC3493477  PMID: 23144615
6.  Gag Induces the Coalescence of Clustered Lipid Rafts and Tetraspanin-Enriched Microdomains at HIV-1 Assembly Sites on the Plasma Membrane ▿  
Journal of Virology  2011;85(19):9749-9766.
The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominately at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly.
doi:10.1128/JVI.00743-11
PMCID: PMC3196429  PMID: 21813604
7.  On the Role of the SP1 Domain in HIV-1 Particle Assembly: a Molecular Switch?▿ 
Journal of Virology  2011;85(9):4111-4121.
Expression of a retroviral protein, Gag, in mammalian cells is sufficient for assembly of immature virus-like particles (VLPs). VLP assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We have investigated the role of SP1, a spacer between CA and NC in HIV-1 Gag, in VLP assembly. Mutational analysis showed that even subtle changes in the first 4 residues of SP1 destroy the ability of Gag to assemble correctly, frequently leading to formation of tubes or other misassembled structures rather than proper VLPs. We also studied the conformation of the CA-SP1 junction region in solution, using both molecular dynamics simulations and circular dichroism. Consonant with nuclear magnetic resonance (NMR) studies from other laboratories, we found that SP1 is nearly unstructured in aqueous solution but undergoes a concerted change to an α-helical conformation when the polarity of the environment is reduced by addition of dimethyl sulfoxide (DMSO), trifluoroethanol, or ethanol. Remarkably, such a coil-to-helix transition is also recapitulated in an aqueous medium at high peptide concentrations. The exquisite sensitivity of SP1 to mutational changes and its ability to undergo a concentration-dependent structural transition raise the possibility that SP1 could act as a molecular switch to prime HIV-1 Gag for VLP assembly. We suggest that changes in the local environment of SP1 when Gag oligomerizes on nucleic acid might trigger this switch.
doi:10.1128/JVI.00006-11
PMCID: PMC3126284  PMID: 21325421
8.  THE CAPSID-SPACER PEPTIDE 1 GAG PROCESSING INTERMEDIATE IS A DOMINANT-NEGATIVE INHIBITOR OF HIV-1 MATURATION 
Virology  2010;400(1):137-144.
The human immunodeficiency virus type 1 (HIV-1) maturation inhibitor bevirimat disrupts virus replication by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) Gag processing intermediate to mature CA. The observation that bevirimat delays but does not completely block CA-SP1 processing suggests that the presence of uncleaved CA-SP1 may disrupt the maturation process in trans. In this study, we validate this hypothesis by using a genetic approach to demonstrate that a non-cleavable CA-SP1 mutant exerts a dominant-negative effect on maturation of wild-type HIV-1. In contrast, a mutant in which cleavage can occur internally within SP1 is significantly less potent as a dominant-negative inhibitor. We also show that bevirimat blocks processing at both the major CA-SP1 cleavage site and the internal site. These data underscore the importance of full CA-SP1 processing for HIV-1 maturation and highlight the therapeutic potential of inhibitors that target this Gag cleavage event.
doi:10.1016/j.virol.2010.01.028
PMCID: PMC2838455  PMID: 20172577
HIV-1; Gag; virus maturation; assembly; retrovirus; protease
9.  Functional Role of Alix in Hiv-1 Replication 
Virology  2009;391(2):284-292.
Retroviral Gag proteins encode small peptide motifs known as late domains that promote the release of virions from infected cells by interacting directly with host cell factors. Three types of retroviral late domains, with core sequences P(T/S)AP, YPXnL, and PPPY, have been identified. HIV-1 encodes a primary P(T/S)AP-type late domain and an apparently secondary late domain sequence of the YPXnL type. The P(T/S)AP and YPXnL motifs interact with the endosomal sorting factors Tsg101 and Alix, respectively. Although biochemical and structural studies support a direct binding between HIV-1 p6 and Alix, the physiological role of Alix in HIV-1 biology remains undefined. To elucidate the function of the p6–Alix interaction in HIV-1 replication, we introduced a series of mutations in the p6 Alix binding site and evaluated the effects on virus particle production and virus replication in a range of cell types, including physiologically relevant primary T cells and macrophages. We also examined the effects of the Alix binding site mutations on virion morphogenesis and single-cycle virus infectivity. We determined that the p6–Alix interaction plays an important role in HIV-1 replication and observed a particularly severe impact of Alix binding site mutations when they were combined with mutational inactivation of the Tsg101 binding site.
doi:10.1016/j.virol.2009.06.016
PMCID: PMC2744943  PMID: 19596386
10.  Evidence that Productive Human Immunodeficiency Virus Type 1 Assembly Can Occur in an Intracellular Compartment▿ †  
Journal of Virology  2009;83(11):5375-5387.
Human immunodeficiency virus type 1 (HIV-1) assembly occurs predominantly at the plasma membrane of infected cells. The targeting of assembly to intracellular compartments such as multivesicular bodies (MVBs) generally leads to a significant reduction in virus release efficiency, suggesting that MVBs are a nonproductive site for HIV-1 assembly. In the current study, we make use of an HIV-1 Gag-matrix mutant, 29/31KE, that is MVB targeted. We previously showed that this mutant is severely defective for virus particle production in HeLa cells but more modestly affected in primary macrophages. To more broadly examine the consequences of MVB targeting for virus production, we investigated 29/31KE particle production in a range of cell types. Surprisingly, this mutant supported highly efficient assembly and release in T cells despite its striking MVB Gag localization. Manipulation of cellular endocytic pathways revealed that unlike Vpu-defective HIV-1, which demonstrated intracellular Gag localization as a result of Gag endocytosis from the plasma membrane, 29/31KE mutant Gag was targeted directly to an MVB compartment. The 29/31KE mutant was unable to support multiple-round replication; however, this defect could be reversed by truncating the cytoplasmic tail of the transmembrane envelope glycoprotein gp41 and by the acquisition of a 16EK change in matrix. The 16EK/29/31KE matrix mutant replicated efficiently in the MT-4 T-cell line despite maintaining an MVB-targeting phenotype. These results indicate that MVB-targeted Gag can be efficiently released from T cells and primary macrophages, suggesting that under some circumstances, late endosomal compartments can serve as productive sites for HIV-1 assembly in these physiologically relevant cell types.
doi:10.1128/JVI.00109-09
PMCID: PMC2681934  PMID: 19297499
11.  Suboptimal inhibition of protease activity in human immunodeficiency virus type 1: Effects on virion morphogenesis and RNA maturation 
Virology  2008;379(1):152-160.
Protease activity within nascently released human immunodeficiency virus type 1 (HIV-1) particles is responsible for the cleavage of the viral polyproteins Gag and Gag-Pol into their constituent parts, which results in the subsequent condensation of the mature conical core surrounding the viral genomic RNA. Concomitant with viral maturation is a conformational change in the packaged viral RNA from a loosely associated dimer into a more thermodynamically stable form. In this study we used suboptimal concentrations of two protease inhibitors, lopinavir and atazanavir, to study their effects on Gag polyprotein processing and on the properties of the RNA in treated virions. Analysis of the treated virions demonstrated that even with high levels of inhibition of viral infectivity (IC90), most of the Gag and Gag-Pol polyproteins were processed, although slight but significant increases in processing intermediates of Gag were detected. Drug treatments also caused a significant increase in the proportion of viruses displaying either immature or aberrant mature morphologies. The aberrant mature particles were characterized by an electron-dense region at the viral periphery and an electron-lucent core structure in the viral center, possibly indicating exclusion of the genomic RNA from these viral cores. Intriguingly, drug treatments caused only a slight decrease in overall thermodynamic stability of the viral RNA dimer, suggesting that the dimeric viral RNA was able to mature in the absence of correct core condensation.
doi:10.1016/j.virol.2008.06.030
PMCID: PMC2577075  PMID: 18657842
HIV-1; protease inhibitor; virus maturation; RNA dimer; virion morphology
12.  Assembly Properties of Human Immunodeficiency Virus Type 1 Gag-Leucine Zipper Chimeras: Implications for Retrovirus Assembly▿  
Journal of Virology  2008;83(5):2216-2225.
Expression of the retroviral Gag protein leads to formation of virus-like particles in mammalian cells. In vitro and in vivo experiments show that nucleic acid is also required for particle assembly. However, several studies have demonstrated that chimeric proteins in which the nucleocapsid domain of Gag is replaced by a leucine zipper motif can also assemble efficiently in mammalian cells. We have now analyzed assembly by chimeric proteins in which nucleocapsid of human immunodeficiency virus type 1 (HIV-1) Gag is replaced by either a dimerizing or a trimerizing zipper. Both proteins assemble well in human 293T cells; the released particles lack detectable RNA. The proteins can coassemble into particles together with full-length, wild-type Gag. We purified these proteins from bacterial lysates. These recombinant “Gag-Zipper” proteins are oligomeric in solution and do not assemble unless cofactors are added; either nucleic acid or inositol phosphates (IPs) can promote particle assembly. When mixed with one equivalent of IPs (which do not support assembly of wild-type Gag), the “dimerizing” Gag-Zipper protein misassembles into very small particles, while the “trimerizing” protein assembles correctly. However, addition of both IPs and nucleic acid leads to correct assembly of all three proteins; the “dimerizing” Gag-Zipper protein also assembles correctly if inositol hexakisphosphate is supplemented with other polyanions. We suggest that correct assembly requires both oligomeric association at the C terminus of Gag and neutralization of positive charges near its N terminus.
doi:10.1128/JVI.02031-08
PMCID: PMC2643709  PMID: 19073719
13.  Structure of the Myristylated Human Immunodeficiency Virus Type 2 Matrix Protein and the Role of Phosphatidylinositol-(4,5)-Bisphosphate in Membrane Targeting 
Journal of molecular biology  2008;382(2):434-447.
During the late phase of retroviral replication, newly synthesized Gag proteins are targeted to the plasma membrane (PM), where they assemble and bud to form immature virus particles. Membrane targeting by human immunodeficiency virus type 1 (HIV-1) Gag is mediated by the PM marker molecule phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], which is capable of binding to the matrix (MA) domain of Gag in an extended lipid conformation and of triggering myristate exposure. Here, we show that, as observed previously for HIV-1 MA, the myristyl group of HIV-2 MA is partially sequestered within a narrow hydrophobic tunnel formed by side chains of helices 1, 2, 3, and 5. However, the myristate of HIV-2 MA is more tightly sequestered than that of the HIV-1 protein and does not exhibit concentration-dependent exposure. Soluble PI(4,5)P2 analogs containing truncated acyl chains bind HIV-2 MA and induce minor long-range structural changes but do not trigger myristate exposure. Despite these differences, the site of HIV-2 assembly in vivo can be manipulated by enzymes that regulate PI(4,5)P2 localization. Our findings indicate that HIV-1 and HIV-2 are both targeted to the PM for assembly via a PI(4,5)P2-dependent mechanism, despite differences in the sensitivity of the MA myristyl switch, and suggest a potential mechanism that may contribute to the poor replication kinetics of HIV-2.
doi:10.1016/j.jmb.2008.07.027
PMCID: PMC2581411  PMID: 18657545
HIV-1, HIV-2; Gag; myristyl, myr; matrix, MA; phosphatidylinositol-4,5-bisphosphate, PI(4,5)P2
14.  Inhibition of Human Immunodeficiency Virus Type 1 Assembly and Release by the Cholesterol-Binding Compound Amphotericin B Methyl Ester: Evidence for Vpu Dependence ▿  
Journal of Virology  2008;82(19):9776-9781.
We investigated the mechanism by which the cholesterol-binding compound amphotericin B methyl ester (AME) inhibits human immunodeficiency virus type 1 (HIV-1) particle production. We observed no significant effect of AME on Gag binding to the plasma membrane, Gag association with lipid rafts, or Gag multimerization, indicating that the mechanism of inhibition by AME is distinct from that by cholesterol depletion. Electron microscopy analysis indicated that AME significantly disrupts virion morphology. Interestingly, we found that AME does not inhibit the release of Vpu-defective HIV-1 or Vpu− retroviruses such as murine leukemia virus and simian immunodeficiency virus. We demonstrated that the ability of Vpu to counter the activity of CD317/BST-2/tetherin is markedly reduced by AME. These results indicate that AME interferes with the anti-CD317/BST-2/tetherin function of Vpu.
doi:10.1128/JVI.00917-08
PMCID: PMC2546975  PMID: 18653459
15.  Molecular Characterization of Feline Immunodeficiency Virus Budding▿  
Journal of Virology  2007;82(5):2106-2119.
Infection of domestic cats with feline immunodeficiency virus (FIV) is an important model system for studying human immunodeficiency virus type 1 (HIV-1) infection due to numerous similarities in pathogenesis induced by these two lentiviruses. However, many molecular aspects of FIV replication remain poorly understood. It is well established that retroviruses use short peptide motifs in Gag, known as late domains, to usurp cellular endosomal sorting machinery and promote virus release from infected cells. For example, the Pro-Thr/Ser-Ala-Pro [P(T/S)AP] motif of HIV-1 Gag interacts directly with Tsg101, a component of the endosomal sorting complex required for transport I (ESCRT-I). A Tyr-Pro-Asp-Leu (YPDL) motif in equine infectious anemia virus (EIAV), and a related sequence in HIV-1, bind the endosomal sorting factor Alix. In this study we sought to identify and characterize FIV late domain(s) and elucidate cellular machinery involved in FIV release. We determined that mutagenesis of a PSAP motif in FIV Gag, small interfering RNA-mediated knockdown of Tsg101 expression, and overexpression of a P(T/S)AP-binding fragment of Tsg101 (TSG-5′) each inhibited FIV release. We also observed direct binding of FIV Gag peptides to Tsg101. In contrast, mutagenesis of a potential Alix-binding motif in FIV Gag did not affect FIV release. Similarly, expression of the HIV-1/EIAV Gag-binding domain of Alix (Alix-V) did not disrupt FIV budding, and FIV Gag peptides showed no affinity for Alix-V. Our data demonstrate that FIV relies predominantly on a Tsg101-binding PSAP motif in the C terminus of Gag to promote virus release in HeLa cells, and this budding mechanism is highly conserved in feline cells.
doi:10.1128/JVI.02337-07
PMCID: PMC2258934  PMID: 18094166
16.  Real-Time Visualization of HIV-1 GAG Trafficking in Infected Macrophages 
PLoS Pathogens  2008;4(3):e1000015.
HIV-1 particle production is driven by the Gag precursor protein Pr55Gag. Despite significant progress in defining both the viral and cellular determinants of HIV-1 assembly and release, the trafficking pathway used by Gag to reach its site of assembly in the infected cell remains to be elucidated. The Gag trafficking itinerary in primary monocyte-derived macrophages is especially poorly understood. To define the site of assembly and characterize the Gag trafficking pathway in this physiologically relevant cell type, we have made use of the biarsenical-tetracysteine system. A small tetracysteine tag was introduced near the C-terminus of the matrix domain of Gag. The insertion of the tag at this position did not interfere with Gag trafficking, virus assembly or release, particle infectivity, or the kinetics of virus replication. By using this in vivo detection system to visualize Gag trafficking in living macrophages, Gag was observed to accumulate both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of late endosomes or multivesicular bodies. Significantly, the internal Gag rapidly translocated to the junction between the infected macrophages and uninfected T cells following macrophage/T-cell synapse formation. These data indicate that a population of Gag in infected macrophages remains sequestered internally and is presented to uninfected target cells at a virological synapse.
Author Summary
The viral Gag protein is both necessary and sufficient for the assembly of a new generation of virus particles. There has been a significant amount of debate in recent years regarding the site in the cell at which HIV-1 assembly takes place. Of particular interest has been the site of assembly in macrophages, a cell type that serves as an important target for HIV-1 infection in vivo. In this study, we examine the site of Gag localization and virus assembly in primary human macrophages in living cells by using biarsenical dyes that become fluorescent when they bind a small target sequence introduced into HIV-1 Gag. We observe Gag localization both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of multivesicular bodies (MVBs). Significantly, when infected macrophages are cocultured with uninfected T cells, the apparently internal Gag moves rapidly to the contact site, or synapse, between the macrophage and the T cell. These findings support the hypothesis that infected macrophages sequester assembled HIV-1 particles in an internal compartment and that these particles move to synapses where cell–cell transmission can occur.
doi:10.1371/journal.ppat.1000015
PMCID: PMC2267008  PMID: 18369466
17.  The Role of WWP1-Gag Interaction and Gag Ubiquitination in Assembly and Release of Human T-Cell Leukemia Virus Type 1▿  
Journal of Virology  2007;81(18):9769-9777.
The PPPY motif in the matrix (MA) domain of human T-cell leukemia virus type 1 (HTLV-1) Gag associates with WWP1, a member of the HECT domain containing family of E3 ubiquitin ligases. Mutation of the PPPY motif arrests particle assembly at an early stage and abolishes ubiquitination of MA. Similar effects are seen when Gag is expressed in the presence of a truncated form of WWP1 that lacks the catalytically active HECT domain (C2WW). To understand the role of ubiquitination in budding, we mutated the four lysines in MA to arginines and identified lysine 74 as the unique site of ubiquitination. Virus-like particles produced by the K74R mutant did not contain ubiquitinated MA and showed a fourfold reduction in the release of infectious particles. Furthermore, the K74R mutation rendered assembly hypersensitive to C2WW inhibition; K74R Gag budding was inhibited at significantly lower levels of expression of C2WW compared with wild-type Gag. This finding indicates that the interaction between Gag and WWP1 is required for functions other than Gag ubiquitination. Additionally, we show that the PPPY− mutant Gag exerts a strong dominant-negative effect on the budding of wild-type Gag, further supporting the importance of recruitment of WWP1 to achieve particle assembly.
doi:10.1128/JVI.00642-07
PMCID: PMC2045422  PMID: 17609263
18.  In Vitro Resistance to the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PA-457 (Bevirimat)▿  
Journal of Virology  2006;80(22):10957-10971.
3-O-(3′,3′-dimethylsuccinyl)betulinic acid (PA-457 or bevirimat) potently inhibits human immunodeficiency virus type 1 (HIV-1) maturation by blocking a late step in the Gag processing pathway, specifically the cleavage of SP1 from the C terminus of capsid (CA). To gain insights into the mechanism(s) by which HIV-1 could evolve resistance to PA-457 and to evaluate the likelihood of such resistance arising in PA-457-treated patients, we sought to identify and characterize a broad spectrum of HIV-1 variants capable of conferring resistance to this compound. Numerous independent rounds of selection repeatedly identified six single-amino-acid substitutions that independently confer PA-457 resistance: three at or near the C terminus of CA (CA-H226Y, -L231F, and -L231M) and three at the first and third residues of SP1 (SP1-A1V, -A3T, and -A3V). We determined that mutations CA-H226Y, CA-L231F, CA-L231M, and SP1-A1V do not impose a significant replication defect on HIV-1 in culture. In contrast, mutations SP1-A3V and -A3T severely impaired virus replication and inhibited virion core condensation. The replication defect imposed by SP1-A3V was reversed by a second-site compensatory mutation in CA (CA-G225S). Intriguingly, high concentrations of PA-457 enhanced the maturation of SP1 residue 3 mutants. The different phenotypes associated with mutations that confer PA-457 resistance suggest the existence of multiple mechanisms by which HIV-1 can evolve resistance to this maturation inhibitor. These findings have implications for the ongoing development of PA-457 to treat HIV-1 infection in vivo.
doi:10.1128/JVI.01369-06
PMCID: PMC1642185  PMID: 16956950

Results 1-18 (18)